refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 326 results
Sort by

Filters

Technology

Platform

accession-icon SRP050012
Zea mays Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Maize is highly sensitive to short term flooding and submergence. We aimed to discover genetic variation for submergence tolerance in maize and elucidate the genetic basis of submergence tolerance through transcriptional profiling of contrasting genotypes. A diverse set of maize nested association mapping (NAM) founder lines were screened, and two highly tolerant (Mo18W and M162W) and sensitive (B97 and B73) genotypes were identified. Transcriptome analysis was performed on these inbreds to provide genome level insights into the molecular responses to submergence. Overall design: RNA deep sequencing of shoot tissue from four inbreds (B73, B97, Mo18W and M162W) in three conditions 24h control (non-submerged), 24h submerged and 72h submerged.

Publication Title

Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE58094
Immune status, strain background, and anatomic site of innoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Papillomaviruses (PVs) are able to induce papillomas, premalignant lesions, and carcinomas in a wide variety of species. PVs are classified first based on their host and tissue tropism and then their genomic diversities. A laboratory mouse papillomavirus, MmuPV1 (formerly MusPV), naturally infects NMRI-Foxn1nu/Foxn1nu (nude; T cell deficient) mice. C57BL/6J wild-type mice were not susceptible to MmuPV1 infection; however, immunocompetent, alopecic, S/RV/Cri-ba/ba (bare) mice developed small papillomas at injection sites that regressed. NMRI-Foxn1nu and B6.Cg-Foxn1nu but not NU/J-Foxn1nu mice were susceptible to MmuPV1 infection. B6 congenic strains, but not other congenic strains carrying the same allelic mutations, that lack B- and T-cells, but not B-cells alone, were susceptible to infection, indicating that mouse strain and T-cell deficiency are critical to tumor formation. Although lesions initially observed were exophytic papillomas around the muzzle, exophytic papillomas on the tail and condylomas of the vaginal lining could be induced by experimental infections. On the dorsal skin, locally invasive, poorly differentiated tumors developed with features similar to human trichoblastomas. Transcriptome analysis revealed significant differences between the normal skin in these anatomic sites and in papillomas versus trichoblastomas. The primarily dysregulated genes involved molecular pathways associated with cancer, cellular development, cellular growth and proliferation, cell morphology, and connective tissue development and function. Surprisingly, few of the genes commonly associated with basal cell carcinoma or squamous cells carcinoma were dramatically dysregulated.

Publication Title

Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72425
Systematic identification of changes in the yeast protein interaction network in response to environmental, chemical, and genetic perturbation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Quantitative analysis of protein interaction network dynamics in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72423
Systematic identification of changes in the yeast protein interaction network in response to environmental, chemical, and genetic perturbation [transcriptome data]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

To understand the principles underlying protein-protein interaction (PPI) complex changes in response to external perturbations, we created a highly multiplexed version of the murine dihydrofolate reductase protein complementation assay (mDHFR PCA) in Saccharomyces cerevisiae, allowing quantitative PPI complex profiling in vivo. We investigated the effects of 14 different conditions (including small molecules, abiotic stress factors, and nutrient composition) on a total of 1383 PPIs. More than half of PPIs (758) were found to be variable, and their Gene Ontology (GO) annotations were found to be informative of both the nature of the perturbation within each condition, as well as the overall variability of the interactions across conditions. Many perturbations triggered network changes characterized by large connected modules centered around highly connected proteins ('hubs'), suggesting that cellular control of a few proteins (e.g., by mRNA levels) can induce widespread PPI remodeling. Under a diauxic shift from glucose to ethanol as the main carbon source, we found a striking relationship between PPI changes measured by our assay and those predicted by mRNA expression under a simple law of mass action based model.

Publication Title

Quantitative analysis of protein interaction network dynamics in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47406
Staphylococcus aureus SH1000 compared to SH1000 thyA
  • organism-icon Staphylococcus aureus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). In TD-SCVs, mutations of thymidylate synthase (thyA, TS), essential for DNA synthesis, occur. However, it has never been shown, that TMP-SMX is responsible for the induction and selection of TD-SCVs. Short-term exposure of TMP-SMX induced the TD-SCV phenotype morphologically as shown in transmission electron-microscopy and on the transcriptional level by qRT-PCR in wild-type S. aureus, while selection of TD-SCVs with thyA mutations occurred only rarely after long-term exposure. In reversion experiments with clinical TD-SCVs, all revertants revealed compensating mutations at the initially identified mutation site. Whole DNA microarray analysis of a thyA deletion mutant (thyA), which exhibited the typical TD-SCV phenotype, identified tremendous alterations compared to the wild-type. Important virulence regulators such as agr, arlRS, sarA and major virulence determinants including hla, hlb, sspA, sspB and geh were down-regulated, while genes associated with the colonization capacity like fnbA, fnbB, spa, clfB, sdrC and sdrD were up-regulated. The expression of genes involved in pyrimidine and purine metabolism as well as in nucleotide interconversion changed significantly. The thyA-mutant was attenuated in virulence in both, a Caenorhabditis elegans killing model and an acute murine pneumonia model. Furthermore, competition experiments in vitro and in vivo (using a chronic pneumonia mouse model) revealed a survival and growth advantage of the thyA-mutant under low thymidine conditions and TMP-SMX exposure. In conclusion, our results clearly show for the first time that TMP-SMX induces the TD-SCV phenotype after short-term exposure in S. aureus and that long-term exposure selects thyA mutations providing an advantage for TD-SCVs under specified conditions. Thus, our results help to understand the dynamic processes of induction and selection of S. aureus TD-SCVs during TMP-SMX exposure.

Publication Title

Inactivation of thyA in Staphylococcus aureus attenuates virulence and has a strong impact on metabolism and virulence gene expression.

Sample Metadata Fields

Time

View Samples
accession-icon SRP057613
MYC is a major determinant of mitotic cell fate
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: To determine global gene expression changes following siRNA knockdown of Myc, Kcnk1, and Snta1 compared to non-targeting siRNAs or mock-transfected cells Methods: Total RNA was processed using the Illumina TruSeq Stranded mRNA Sample Preparation Kit according to manufacturer's protocol. Generated cDNA libraries were sequenced using an Illumina HiSeq 2000 sequencer with four biological replicates sequenced per condition using single read, 50 cycle runs. Quality of sequencing reads were assessed using FastQC (Babraham Bioinformatics) and then aligned to a reference genome (hg19, UCSC Genome Browser) using TopHat. Sequencing yielded, on average, 23.7 million unique reads per sample with a 60.7 - 65.7% mapping rate. Cufflinks was used to generate transcript abundance for each annotated protein-coding gene as Fragments Per Kilobase of transcript per Million mapped reads (FPKM), and statistical analysis and comparison of FPKM values was calculated using R (Bioconductor). Results: Fold changes comparing mock and a non-targeting siRNA were highly congruent. Myc RNAi induced numerous changes, with 955 downregulated genes and 1214 upregulated genes. The effect on Myc itself was relatively modest, possibly reflecting its ability to negatively auto-regulate its own expression. Gene ontology analysis highlighted ribosome biogenesis, metabolism, gene expression, cell cycle, and apoptosis pathways, consistent with known Myc functions. The Kcnk1 siRNA affected 424 genes, with KCNK1 itself one of the most repressed. While gene ontology analysis also highlighted metabolism and biosynthesis pathways, the p-values and fold enrichment scores were substantially lower, indicating that DiM can be suppressed without major effects on metabolism and biosynthesis pathways. The Snta1 siRNA deregulated 575 genes, with SNTA1 itself the most repressed gene. Cell cycle and mitosis-related gene ontology terms feature heavily, consistent with this siRNA accelerating mitotic exit. Interestingly, FoxM1, which drives G2/M gene expression was reduced 1.75-fold, indicating that this siRNA may disrupt mitotic controls by deregulating FoxM1. Conclusions: Global gene expression profiling identifies Egr1 as regulator of mitotic cell fate. Overall design: Total RNA was extracted from at least four replicates of siRNA-transfected cells and libraries for sequencing was prepared for each replicate.

Publication Title

MYC Is a Major Determinant of Mitotic Cell Fate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9520
Transcriptome changes in hMSCs during expansion
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human mesenchymal stem cells or multipotent stromal cells (MSCs) are of interest for clinical therapy, in part because of their capacity for proliferation and differentiation. However, results from clinical trials and in vitro models have been variable, possibly due to MSC heterogeneity and a lack of standardization between MSC in vitro expansion protocols. Here we defined changes in MSCs during expansion in vitro. In low density cultures, MSCs expand through distinct lag, exponential growth and stationary phases. We assayed cultures of passage 2 human MSCs from three donors at low density (50 cells/cm2) at about 5% confluence on Day 2 and after the cultures had expanded to about 70% confluence on Day 7. On Day 2 genes involved in cell division were up-regulated. On Day 7 genes for cell development were up-regulated. The variations between three donors were less than the variation within the expansion of MSCs from a single donor. The microarray data for selected genes were confirmed by real-time PCR, ELISA and FACScan. About 50% of cells at Day 2 were in S-phase compared to 10% at Day 7. The results demonstrated major differences in early and late stage cultures of MSCs that should be considered in using the cells in experiments and clinical applications.

Publication Title

Human multipotent stromal cells undergo sharp transition from division to development in culture.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13002
Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human multipotent stromal cells readily form single-cell-derived colonies when plated at clonal densities. However, the colonies are heterogeneous because cells from a colony form new colonies that vary in size and differentiation potential when replated at clonal densities. The experiments here tested the hypothesis that cells in the inner regions of colonies are partially differentiated, but the differentiation is reversible. Cells were separately isolated from the dense inner (IN) regions and less-dense outer regions (OUT) of single-cell-derived colonies. Cells were then compared by assays of their transcriptomes and proteins, and for clonogenicity and differentiation. IN cells expressed fewer cell-cycle genes and higher levels of genes for extracellular matrix than the OUT cells. When transferred to differentiation medium, differentiation of the colonies occurred primarily in the IN regions. However, the IN cells were indistinguishable from OUT cells when replated at clonal densities and assayed for rates of propagation and clonogenicity. Also, colonies formed by IN cells were similar to colonies formed by OUT cells because they had distinct IN and OUT regions. Cultures of IN and OUT cells remained indistinguishable through multiple passages (30-75 population doublings), and both cells formed colonies that were looser and less dense as they were expanded. The results demonstrated that cells in the IN region of single-cell-derived colonies are partially differentiated, but the differentiation can be reversed by replating the cells at clonal densities.

Publication Title

Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12800
Gene expression changes in passage 1 mesenchymal stem cells from bone marrow stroma during 15 day culturing
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To study the gene expression changes in mesenchymal stem cells from bone marrow stroma (MSCs) during in vitro expansion (from low density), passage 1 MSC were grown in culture for 15 days with medium change every 2-3 days. Samples for microarrays were taken at day 5 (early log-phase), 10 (late log-phase) and 15 (stationary phase). The data was queried for expression changes in Wnt signaling molecules and cell surface markers. Several components of the canonical Wnt signaling pathway were expressed, including Dkk-1; Wnt-5a; alpha-catenin; beta-catenin; frizzled 1, 4, 6, and 7; disheveled; glycogen synthetase kinase 3 beta; and glycogen synthetase kinase 3 alpha. In addition, the expression of over 10 cell surface transcripts decreased and an almost equal number increased during expansion. The two of the transcripts with the largest decreases coded for proteins previously shown to be linked to cell motility and tumor progression: PODXL, and alpha6-integrin (CD49f). As the cultures expanded, the largest increase was for mRNA for the cell adhesion protein VCAM-1. To study the gene expression changes in more detail, real-time RT-PCR, RT-PCR, ELISAs, FACS, and western blotting were performed for additional MSC donors. The results demonstrated dramatic changes in the transcriptome of MSCs during in vitro expansion.

Publication Title

The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP101569
Length-independent telomere damage drives cardiomyocyte senescence
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Ageing is the biggest risk factor to cardiovascular health and is associated with increased incidence of cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening has been implicated in age-related cardiac dysfunction. However, the role of cellular senescence and its underlying mechanisms in slowly dividing/post-mitotic cardiomyocytes is not understood. Overall design: We quantify transcription via high throughput RNA sequencing in young (3 months) and old (20 months) mouse cardiomyocytes.

Publication Title

Length-independent telomere damage drives post-mitotic cardiomyocyte senescence.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact