refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 55 results
Sort by

Filters

Technology

Platform

accession-icon GSE71875
Expression data from roots of WT and bts-3 plants exposed to either Fe sufficient or Fe deficient conditions for 72 hours
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We wanted to understand at what level BTS acts, i.e. how upstream BTS acts and if BTS misregulation affets only a subset or multiple subsets of Fe regulated genes. We studied WT and bts-3 mutant roots.

Publication Title

BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2501
Ikaros mutant thymic tumors
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The experiment was to compare leukemic T cells from thymic lymphomas from homozygote mice for the IkL/L hypomorphic mutation and non-transformed thymocytes, either of WT or IkL/L genotype. The aim was to identify a gene expression signature specific to the IkL/L tumors.

Publication Title

Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25911
Expression changes after loss of Dot1l in murine MLL-AF9 leukemia cells
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MLL-fusions may induce leukemogenic gene expression programs by recruiting the histone H3K79 methyltransferase to MLL-target promoters. We evaluated gene expression changes after cre-mediated loss of Dot1l in leukemia cells obtained from mice injected with MLL-9 transformed lineage negative bone marrow cells.

Publication Title

MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32265
Gene-expression changes resulting from loss of the mTORC1 component Raptor in murine hematopoietic stem and progenitor cell-enriched populations (HSPC)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion.

Publication Title

mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37355
A Computational Profiling of Changes in Gene Expression and Transcription Factors Induced by vFLIP K13 in Primary Effusion Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Infection of Kaposi's sarcoma associated herpes virus (KSHV) has been linked to the development of primary effusion lymphoma (PEL), which is characterized by the loss of expression of B cell markers and effusions in the body cavities. This unique clinical feature of PEL has been attributed to their distinctive gene expression profile which shows overexpression of genes in various signaling pathways. KSHV-encoded latent protein vFLIP K13 has been shown to promote the survival and proliferation of PEL cells. In this study, we have employed gene array analysis followed by bioinformatics analysis of coordinated transcriptional factors network as well as biological pathways to characterize the effect of K13 on PEL-derived BCBL1 cells. We observed that genes associated with Cytokine signaling, Cell death, NF-kappaB and Cell adhesion pathways were differentially regulated by K13.

Publication Title

A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE16051
Effect of ectotopic expression of K13 on global gene expression in HUVEC
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Integrated microarray and multiplex cytokine analyses of Kaposi's Sarcoma Asssociated Herpesvirus viral FLICE Inhibitory Protein K13 affected genes and cytokines in human blood vascular endothelial cells. The KSHV-encoded K13 protein is one of the few proteins to be expressed in latently-infected spindle cells and the ectopic expression of K13 in human vascular endothelial cells is sufficient to transform them into spindle cells.

Publication Title

Integrated microarray and multiplex cytokine analyses of Kaposi's Sarcoma Associated Herpesvirus viral FLICE Inhibitory Protein K13 affected genes and cytokines in human blood vascular endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49245
NF-kB essential modulator (NEMO) is essential for KSHV-encoded viral FLICE inhibitory protein (vFLIP) K13- induced gene expression and its N-terminal 251 resdidues are sufficent for this process
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We report here that KSHV viral infection targets the NF-kB pathway which is crucial for cell survival. KSHV protein vFLIP K13 is known to directly interact with cellular protein NEMO of the NF-kB pathway. We used gene expression array to suggets that the interaction of K13 with NEMO is important to activate NF-kB pathway.

Publication Title

NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68050
Linker histone H1.2 establishes chromatin comapction and gene silencing through recognition of H3K27me3
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Linker histone H1 is a protein component of chromatin and has been linked to chromatin compaction and global gene silencing.It has been sugegsted that H1 plays a significant role, regulating a relatively small number of genes. Here we show that H1.2- a variant of H1 subtype is recruited to chromatin region and is dependent on EZH2-mediated H3K27me3. Therefore a Gene expression array analysis was carried out with H1.2 as well as EZH2 knockout MCF7 cells to confirm the interlationship of H1.2 and EZH2 activity.

Publication Title

Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP052924
Transcriptome analysis of TNFR2-knockout mouse colon
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PURPOSE: The goal of this study was to determine the gene expression networks regulated by tumor necrosis factor receptor 2 (TNFR2, or Tnfrsf1b) and to evaluate their potential bearing on immune cell subsets and inflammatory bowel disease (IBD). METHODS: mRNA-seq was performed on isolated distal colons from TNFR2-knockout and wildtype mice. Differentially expressed transcripts were compared to human ulcerative colitis microarray datasets on Gene Expression Omnibus and to mouse immunological expression datasets at the Immunological Genome Project. RESULTS: We identified 252 mouse transcripts whose expressions were significantly altered by the loss of TNFR2. The majority of these transcripts (228 of 252, ~90%) were downregulated in TNFR2-/- colons. TNFR2-regulated genes were able to positively discriminate between ulcerative colitis patients and healthy individuals with ~80% accuracy. Many TNFR2-regulated genes were also highly expressed in CD8+ T cells. CONCLUSIONS: Downregulation of TNFR2 is associated with a gene expression profile that is prominent in IBD and supportive of the role of CD8+ T cells in IBD pathogenesis. MANUSCRIPT ABSTRACT: Increased tumor necrosis factor (TNF) production has been associated with inflammatory bowel disease (IBD), and anti-TNF therapy is a common therapeutic for this patient population. However, the role of TNF or its receptors (TNFR1 and TNFR2) in the immunopathogenesis of inflammatory bowel disease (IBD) remains unclear. Here we report that TNFR2 is protective in spontaneous (IL-10 knockout) and chemically (azoxymethane/dextran sodium sulfate)-induced mouse models of colitis and colitis-associated cancer. Mechanistically, TNFR2-deficiency in hematopoietic cells significantly increased incidence and severity of colitis and colitis-associated cancer characterized by a selective expansion of CD8+ T cells. We identified TNFR2-regulated genes in the colon that were specific for CD8+ T cells, interacted with multiple IBD risk genes, and are important regulators of CD8+ T cell biology. TNFR2 regulated CD8+ T-cell-specific genes that act as genetic susceptibility modifiers for IBD to mitigate the development of a pro-colitogenic milieu. Antibody-mediated depletion of CD8+ T cells prevented colonic inflammation and significantly reduced pathology in IL10-/-/TNFR2-/- deficient mice. Furthermore, adoptive transfer of TNFR2-/- naïve CD8+ T cells resulted in more severe disease than with wildtype naïve CD8+ T cells. Our findings provide insight into the disease modifier role of TNFR2 in the immunopathogenesis of IBD through the modulation of CD8+ T cell responses and support future investigation of this therapeutic target, especially in the subset of IBD patients with CD8+ T-cell dysfunction. Overall design: Total RNA from distal colons of 8 week-old male wildtype C57Bl/6 and TNFR2-/- mice (n=3 each) was isolated using the PureLink RNA kit (Ambion, Life Technologies). RNA samples were submitted to the Genomic Services Lab at the HudsonAlpha Institute for Biotechnology (Huntsville, AL) for multiplex library preparation, mRNA enrichment, and sequencing. Sequencing was performed to an average depth of 50M paired-end 50bp reads per sample (HiSeq, Illumina, San Diego, CA). Data files containing raw reads were aligned to the mouse genome using Tophat2/Bowtie2. Alignments were assembled into transcript representations with Cufflinks, and statistical tests for differential expression were performed with Cuffdiff 2. An adjusted P value < 0.05 (q<0.05) from the Cuffdiff 2 output was used as the cutoff for statistical significance.

Publication Title

Tumor Necrosis Factor Receptor 2 Restricts the Pathogenicity of CD8(+) T Cells in Mice With Colitis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072697
BMP (Bone morphogenetic protein) signaling network regulates mesenchymal stem cell lineage commitment during tooth development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Mesenchymal stem cells (MSCs) are multipotent progenitor cells present in various mesenchymal tissues that undergo strict lineage-specific differentiation programs, faithful to their unique tissue origins. However, the key regulators that activate dental pulp MSC commitment to odontogenesis remain unclear. In this study, we utilized an inducible Cre/loxP system to interrupt BMP signaling in apical MSCs at the onset of molar root formation in order to investigate the functional requirement for BMP signaling and its downstream targets in MSC cell fate determination during tooth morphogenesis. Overall design: mRNA profiling of MSC to study role of BMP signaling in tooth morphogenesis

Publication Title

BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact