refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 182 results
Sort by

Filters

Technology

Platform

accession-icon GSE31244
Notch1 mediates cell fate decisions in the mouse uterus and is critical for complete decidualization
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and trans-differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by gamma-secretase inhibition resulted in significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1d/d) confirmed a Notch1-dependant hypomorphic decidual phenotype.

Publication Title

Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon E-MEXP-1276
Transcription profiling by array of pancreatic cells from C57BL/6 mice following dibenzazepine treatment
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

DBZ (dibenzazepine) treatment in C57BL/6 mice, pancreatic gene expression

Publication Title

Notch signaling is required for exocrine regeneration after acute pancreatitis.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Compound, Time

View Samples
accession-icon SRP110257
Signaling strength determines proapoptotic functions of STING
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

T cells exhibit an intensified STING response, which leads to the expression of a distinct set of genes and results in the induction of apoptosis Overall design: CD4+ T cells were stimulated either with DMSO or 10-carboxymethyl-9-acridanone (CMA) for 16 hours. RNA was isolated for analysis.

Publication Title

Signalling strength determines proapoptotic functions of STING.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP092010
Hit-and-run'' programing of CAR-T cells using mRNA nanocarriers
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNAseq of ex vivo CD8 T cell lineages and in vitro differentiated CD8 T cells treated with nanocarriers encapsulating control or Foxo1-3A transcription factor mRNA Overall design: Gene expression in central memory CD8 and in vitro Foxo1-3A nanoparticle treated CD8 were compared to control cells cultured in vitro with eGFP mRNA encapsulating nanoparticles.

Publication Title

Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP119033
Notch1 haploinsufficiency causes aortic aneurysms in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Ascending aortic aneurysms (AscAA) are a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Lineage tracing analysis showed that loss of Notch1 in the SHF reduces the number of SHF-derived smooth muscle cells in the aortic root, and RNA-seq analysis demonstrated distinct in vivo expression patterns between lineage-specific regions of the ascending aorta. Finally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 independently predisposes to AscAA. These findings are the first to demonstrate a SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy. Overall design: To determine why dilation was localized to the aortic root in Notch1.129S6+/- mice, RNA-sequencing was performed on proximal and distal ascending aortic tissue from Notch1.129S6+/- mice and wildtype littermates at 2 months of age. Transcriptome analysis was utilized to better understand why the dilation was localized to the aortic root. Hierarchical cluster analysis grouped these samples based on location first and then genotype, and showed that cells of the proximal and distal ascending aorta have distinct gene expression patterns in vivo.

Publication Title

Notch1 haploinsufficiency causes ascending aortic aneurysms in mice.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE15194
Hedgehog signaling is dispensable for adult hematopoietic stem cell function
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Hedgehog (Hh) signaling pathway is a developmentally conserved regulator of stem cell function. Several reports suggested that Hh signaling is an important regulator of hematopoietic stem cell (HSC) maintenance and differentiation. Here we test this hypothesis in vivo using both gain- and loss-of-function Hh genetic models. Surprisingly, our studies demonstrate that conditional Smoothened (Smo) deletion or over-activation has no significant effects on adult HSC self-renewal and function. Moreover, they indicate a lack of synergism between the Notch and Hh pathways in HSC function, as RBPJ- and Smo-deficiency do not affect hematopoiesis. In agreement with this notion, detailed genome-wide transcriptome analysis reveals that silencing of Hh signaling does not significantly alter the HSC-specific gene expression signature. Our studies demonstrate that the Hh signaling pathway is dispensable for adult HSC function and suggest that the Hh pathway can be targeted in future clinical trials addressing the effect of Hh inhibition on leukemia-initiating cell maintenance.

Publication Title

Hedgehog signaling is dispensable for adult hematopoietic stem cell function.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE41839
Expression data from control and LRF (leukemia/lymphoma related factor)-deficient mouse LT-HSCs
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

LRF, which is encoded by the ZBTB7A gene and formerly known as POKEMON (POK erythroid myeloid ontogenic factor), was originally identified as a PLZF (promyelocytic leukemia zinc finger) homologue interacting with BCL6 (B-cell lymphoma 6). LRF is a transcription factor that is broadly expressed in hematopoietic lineage cells, but its expression is particularly high in erythroblasts and germinal center (GC) B-cells. The goal of this study is to assess the effect of LRF loss on the LT-HSC transcriptome. Nine days after injection of adult mice with polyinosinic polycytidylic acid (pIpc) to activate Cre, total RNAs were isolated from double-sorted LT-HSCs from LRF Flox/+ Mx1-Cre+ and LRF Flox/Flox Mx1-Cre+ mice and processed for microarray analysis.

Publication Title

LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE14471
Affymetrix U133A array data for 111 pediatric acute myeloid leukemia (AML) samples at diagnosis
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Genome-wide profiling of Copy Number Alterations (CNA) and Loss of Heterozygosity (LOH), gene expression and resequencing of pediatric AML

Publication Title

Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12995
Expression data for diagnosis acute lymphoblastic leukemia samples
  • organism-icon Homo sapiens
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We studied a cohort of 221 high-risk pediatric B-progenitor ALL patients that excluded known high risk ALL subtypes (BCR-ABL1 and infant ALL), using Affymetrix single nucleotide polymorphism microarrays, gene expression profiling and candidate gene resequencing. A CNA poor outcome predictor was identified using a semi-supervised principal components approach, and tested in an independent validation cohort of 258 pediatric B-progenitor ALL cases. Over 50 regions of recurring somatically acquired CNA, with the most frequently targeted genes encoding regulators of B-lymphoid development (66.8% of cases; with PAX5 targeted in 31.7% and IKZF1 in 28.6%). A CNA classifier identified a very poor outcome subgroup in the high-risk cohort (P=4.2x10-5) and was strongly associated with the presence of deletions involving IKZF1, which encodes the early lymphoid transcription factor IKAROS. This classifier, and IKZF1 deletions, also predicted poor outcome and elevated minimal residual disease at the end of induction therapy in the validation cohort. The gene expression signature of the poor outcome group was characterized by reduced expression of B lineage specific genes, and was highly related to the expressing signature of BCR-ABL1 ALL, a known high-risk ALL subtype also characterized by a high frequency of IKZF1 deletion.Somatically acquired deletions involving IKZF1 identify a very poor outcome subgroup of pediatric ALL patients. Incorporation of molecular tests to identify IKZF1 deletion in diagnostic leukemic blasts should improve the ability to accurately risk stratify patients for appropriate therapy.

Publication Title

Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE140179
Effect of SPINK1 and IL-6 knockdown in JHOC9 and JHOC5 ovarian clear cell carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Response of JHCO9 and JHOC5 cells to infection with NT (control) lentivirus or one of two knockdown lentiviruses, SPINK1 KD or IL-6 KD.

Publication Title

Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact