refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 83 results
Sort by

Filters

Technology

Platform

accession-icon GSE14366
Analysis of the retinal gene expression after hypoxic preconditioning identifies candidate genes for neuroprotection
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neuroprotective therapies for retinal degeneration may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1 in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration.

Publication Title

Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13433
Gene Expression Profiling of Alveolar Soft-Part Sarcoma (ASPS)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.

Publication Title

Gene expression profiling of alveolar soft-part sarcoma (ASPS).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12628
Cardiac samples from OTT1 null/null and OTT1 null/wt embryonic mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The infant leukemia-associated gene, Ott1(Rbm15), has broad regulatory effects within the murine hematopoiesis. However, germline Ott1 deletion results in fetal demise prior to E10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs, and in Drosophila has a significant role in the development of the head and thorax. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. Rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This result shows that the process of vascular branching morphogenesis in Ott1-deficient animals is regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts shows enrichment of hypoxia-related genes and significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways in addition to being implicated in leukemogenesis, may also be important in the pathogenesis of placental insufficiency and cardiac malformations.

Publication Title

Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37047
Hematopoietic stem cells lacking Ott1 display aspects associated with aging and are unable to maintain quiescence during proliferative stress
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The infant leukemia-associated gene, Ott1 (Rbm15), has broad regulatory effects on embryonic development and hematopoiesis. Embryonic deletion of Ott1 results in defects to the placenta, spleen and heart. Conditional deletion within the adult hematopoietic compartment demonstrates a requirement in pre-B development and inhibitory roles in myeloid progenitor and megakaryocyte populations. Ott1-deleted bone marrow has an expansion of the Lin- Sca-1+ c-Kit+ (LSK) population which includes the hematopoietic stem cell (HSC) population. Functional HSC testing through competitive repopulation of irradiated recipients demonstrated however, a severe defect in Ott1-deficient HSCs, despite adequate numbers of immunophenotypically identified long term HSCs. Although mice deleted in situ for Ott1 are able to maintain hematopoiesis in steady state over a normal lifetime, but when subjected to proliferative stress, the HSC population loses the self-renewing, G0 fraction and undergoes bone marrow failure.

Publication Title

Hematopoietic stem cells lacking Ott1 display aspects associated with aging and are unable to maintain quiescence during proliferative stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13869
Transcriptome of the Nxnl1-/- mouse retina
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Rod-derived Cone Viability Factor (RdCVF, alias nxnl1) is a retina-specific protein identified for its therapeutic potential in supporting cone survival during retinal degeneration.

Publication Title

The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE28133
Transcriptomic analysis of human retinal detachment (RD) reveals both inflammation and photoreceptor death
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment.

Publication Title

Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE23368
Identification of C/EBP Target Genes in ALK+ Anaplastic Large Cell Lymphoma (ALCL) by Gene Expression Profiling and Chromatin Immunoprecipitation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

C/EBP (CCAAT enhancer binding protein) is a transcription factor that plays a crucial role in survival and transformation of ALK+ anaplastic large cell lymphoma (ALCL). The aim of this study was to identify the downstream targets of C/EBP responsible for ALK-mediated oncogenesis. C/EBP was knocked down in ALK+ ALCL cell lines with a C/EBP-shRNA, followed by gene expression profiling (GEP). GEP analysis revealed a reproducible signature of genes that were significantly regulated by C/EBP. Classification into biological categories revealed overrepresentation of genes involved in the immune response, apoptosis and cell proliferation. Transcriptional regulation by C/EBP was found in 6 of 11 (BCL2A1, G0S2, TRIB1, S100A9, DDX21 and DDIT4) genes investigated by chromatin immunoprecipitation. We demonstrated that BCL2A1, G0S2 and DDX21 play a crucial role in survival and proliferation of ALK+ ALCL cells. DDX21, a gene involved in rRNA biogenesis, was found differentially overexpressed in primary ALK+ ALCL cases. All three candidate genes were validated in primary ALCL cases by either immunohistochemistry or RT-qPCR. In conclusion, we identified and validated several key C/EBP-regulated genes with major impact on survival and cell growth in ALK+ ALCL, supporting the central role of C/EBP in ALK-mediated oncogenesis.

Publication Title

Identification of C/EBPβ target genes in ALK+ anaplastic large cell lymphoma (ALCL) by gene expression profiling and chromatin immunoprecipitation.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE22813
Transcriptome of the bone metastasis associated stroma
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature (Core OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Publication Title

The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP094482
Transciptiome of human primary resting CD4 T lymphocytes infected with HIV-1
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Assessing the impact of HIV-1 infection on trancriptional program of quiescent CD4 T lymphocytes. Such cells were made susceptible to HIV-1 by dowmodulating SAMHD1 restriction factor using VLP-Vpx without any activation signal.

Publication Title

CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP149794
Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline [cell populations]
  • organism-icon Homo sapiens
  • sample-icon 149 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms leading to ageing remain elusive. We present a proteome-wide atlas of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) along with five other cell types that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified was assessed in a cohort of healthy human subjects from different age. As the HPCs became older, pathways in central carbon metabolism exhibited features reminiscent of the Warburg effect where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation revealed a reduced functionality and a bias towards myeloid differentiation at the expense of lymphoid development. Ageing caused significant alterations in the bone marrow niche too, such as functionality of the pathways involved in HPC homing and lineage differentiation. The data represents a valuable resource for further in-depth mechanistic analyses, and for validation of knowledge gained from animal models. Overall design: RNA-seq samples extracted from human bone marrow, from 6 cell populations (HPC, LYM, MON, ERP, GRA, MSC). Technical replicates are included for each donor and cell type. Technical replicates were produced by making independent libraries from the same RNA.

Publication Title

Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact