refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1007 results
Sort by

Filters

Technology

Platform

accession-icon GSE87806
Gene expression profiles of human Mesenchymal Stromal Cells (MSC) from JAK2+ myeloproliferative neoplasms (MPN)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study we analyzed the behavior of bone marrow MSC (BM-MSC) from MPN patients with the mutation in JAK2V617F. We initially characterized the biological function and gene expression profile changes in BM-MSC from MPN patients when compared to BM-MSC of healthy donors (HD). Then, we established co-cultures between MSC cell lines (HTERT and HS5) and the UKE-1 MPN cell line, and performed RT-PCR to study if the leukemic cells were able to modify the genes related to hematopoietic support.

Publication Title

Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE141623
A novel whole blood gene expression signature for asthma, dermatitis and rhinitis multimorbidity in BAMSE cohort
  • organism-icon Homo sapiens
  • sample-icon 225 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Allergic diseases correspond to a broad range of hypersensitivity reactions, often occurring as co-morbidities. Investigation of the molecular basis of allergy is a challenge because of its highly heterogeneous nature. We combined large-scale and high-throughput gene expression technology and systems biology approaches to retrieve relevant biomarkers and signalling pathways.

Publication Title

A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE141631
A novel whole blood gene expression signature for asthma, dermatitis and rhinitis multimorbidity in INMA cohort
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Allergic diseases correspond to a broad range of hypersensitivity reactions, often occurring as co-morbidities. Investigation of the molecular basis of allergy is a challenge because of its highly heterogeneous nature. We combined large-scale and high-throughput gene expression technology and systems biology approaches to retrieve relevant biomarkers and signalling pathways.

Publication Title

A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE104859
Gene Expression of MCF10A cells expresing ERAS
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

ERAS (Embryonic stem (ES) cell-expressed Ras) is a constitutively active member of the Ras family that is not expressed in adult tissues, and has been involved in breast cancer.

Publication Title

The Ras-related gene ERAS is involved in human and murine breast cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE42192
Gene expression data from C.elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3mM and 5mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. We performed a transcriptomic analysis of C. elegans fed with this strain and showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans.

Publication Title

Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

Sample Metadata Fields

Time

View Samples
accession-icon GSE71482
Expression data from Caenorhabditis elegans fed with a Lactoferrin-based product
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Lactoferrin is a highly multifunctional protein. Indeed, it is involved in many physiological functions, including regulation of iron absorption and immune responses.

Publication Title

A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid <i>β</i> peptide toxicity in <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44318
Expression data from Caenorhabditis elegans fed with 13L cocoa peptide
  • organism-icon Caenorhabditis elegans
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Cocoa protein content is a very interesting source for isolation of antioxidant bio-peptides, which can be used for the prevention of age-related diseases. We use microarrays to study the global genome expression of C. elegans fed with a peptide (13L) isolated from cocoa.

Publication Title

A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32592
Human and mouse lupus nephritis cross-species transcriptional analysis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), (ffymetrixgenechipmousegenome4302.0array[cdf:mmentrezg10)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE37463
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32591
Expression data from human with lupus nephritis (LN)
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), (ffymetrixgenechipmousegenome4302.0array[cdf:mmentrezg10)

Description

Nephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these models. In this study we used an unbiased transcriptional network approach to define similarities and differences between three lupus models and human LN. Affymetrix-based expression profiles were analyzed using Genomatix Bibliosphere software and transcriptional networks were compared using the Tool for Approximate LargE graph matching (TALE). The 20 network hubs (nodes) shared between all three models and human LN reflect key pathologic processes, namely immune cell infiltration/activation, macrophage/dendritic cell activation, endothelial cell activation/injury and tissue remodeling/fibrosis. Each model also shares unique features with human LN. Pathway analysis of the TALE nodes highlighted macrophage/DC activation as a cross-species shared feature. To distinguish which genes and activation pathways might derive from mononuclear phagocytes in the human kidneys the gene expression profile of isolated NZB/W renal mononuclear cells was compared with human LN kidney profiles. Network analysis of the shared signature highlighted NFkappaB1 and PPARgamma as major hubs in the tubulointerstitial and glomerular networks respectively. Key nodes in the renal macrophage inflammatory response form the basis for further mechanistic and therapeutic studies.

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact