refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 595 results
Sort by

Filters

Technology

Platform

accession-icon GSE54589
Role of Notch signaling pathway in urothelial cancer
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Notch signaling pathway controls cell fates through interactions between neighboring cells by positively or negatively affecting, in a context-dependent manner, processes of proliferation, differentiation, and apoptosis1. It has been implicated in human cancer both as an oncogene and a tumor suppressor2. Here we report, for the first time, novel inactivating mutations in the Notch pathway components in over forty percent of the human bladder cancers examined. Bladder cancer is the fourth most commonly diagnosed malignancy in the US male population3. Thus far, driver mutations in the FGFR3 and less commonly RAS proteins have been identified4,5. We show that Notch activation in bladder cancer cells suppresses proliferation both in vitro and in vivo by directly upregulating dual specificity phosphatases (DUSPs), thus reducing ERK1/2 phosphorylation. In mouse models, genetic inactivation of Notch signaling leads to ERK1/2 phosphorylation resulting in tumorigenesis in the urinary tract. In recent years, the tumor suppressor role of Notch has been recognized by loss-of-function mutations identified in myeloid cancers6 as well as squamous cell carcinomas of the skin, lung7, and the head and neck8,9. Of the 4 Notch receptors (N1-4), only N1 and 2 have been implicated in human cancer.

Publication Title

A new tumor suppressor role for the Notch pathway in bladder cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP096365
Gene expression profiling (RNA-seq with partial depletion of rRNA) of livers of hypophysectomized male mice treated with a single pulse of growth hormone (GH)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We investigated the effects of a single pulse of growth hormone on the transcriptional activation of STAT5 target genes in hypophysectomized male mouse liver. This GEO series is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes. Overall design: Liver RNA was isolated from hypophysectomized male mice that were untreated, or were treated with a single pulse of GH and euthanized 30, 90 or 240 minutes later. 8 Individual RNA samples were pooled to make 2 biological replicates per condition for RNA-seq analysis.

Publication Title

Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP096363
Gene expression profile (RNA-seq) of hypophysectomized male mouse liver treated with a single pulse of growth hormone (GH)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We investigated the effects of a single pulse of growth hormone on the transcriptional activation of STAT5 target genes in hypophysectomized male mouse liver. This GEO series is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes. Overall design: Liver RNA was isolated from untreated hypophysectomized male mice and from hypophysectomized male mice treated with a single pulse of GH and euthanized 30, 90 or 240 minutes later. 8 Individual RNA samples were pooled to make 2 biological replicates per condition for RNA-seq analysis.

Publication Title

Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE41949
mRNA oxidation data from dry dormant and after-ripened wheat seeds
  • organism-icon Triticum aestivum
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

After-ripening induced seed dormancy release in wheat is associated with mRNA oxidation.

Publication Title

Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45417
Expression data from knockdown of ZXDC1/2 in PMA-treated U937
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ZXDC1 augments the expression of various markers of monocyte/macrophage differentiation when over-expressed in the U937 cell line treated with the phorbol ester PMA. Likewise, knockdown of ZXDC1 restricts the induced expression of these markers. We sought to identify specfic gene targets of ZXDC1 during the process of monocyte/macrophage differentiation in U937 by performing gene expression profiling in cells exhibiting reduced expression of ZXDC1 compared to controls.

Publication Title

The zinc finger transcription factor ZXDC activates CCL2 gene expression by opposing BCL6-mediated repression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP059513
AE9aId1fl/flCreER cells
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

AE9aId1fl/flCreER cells treated with the control vehicle, CBD or 4-OHT Overall design: We treated AE9aId1fl/flCreER leukemia with 0.1 µM 4-hydroxytamoxifen (4-OHT) for 48 hours or the Id1 inhibitor CBD (at 15 µM) for 16 hours, and isolated RNA for RNA-seq analysis.

Publication Title

Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP020490
Single-cell RNA-Seq reveals dynamic, random monoallelic gene expression in mammalian cells
  • organism-icon Mus musculus
  • sample-icon 293 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In the diploid genome, genes come in two copies, which can have different DNA sequence and where one is maternal and one is paternal. In a particular cell, a gene could potentially be expressed from both copies (biallelic expression) or only one (monoallelic). We performed RNA-Sequencing on individual cells, from zygote to the cells of the late blastocyst, and also individual cells from the adult liver. Using first generation crosses between two distantly related mouse strains, CAST/Ei and C57BL/6, we determined the expression separately from the maternal and paternal alleles. We found that half of the genes were expressed by only one allele, randomly so that some cells would express the paternal allele, some the maternal and a few cell both alleles. We also observed the spread of the progressive inactivation of the paternal X chromosome. Overall design: First generation mouse strain crosses were used to study monoallelic expression on the single cell level

Publication Title

Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049815
RNA-seq analysis of differences in gene expression between dorsal and ventral MEC
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. Overall design: Examination of dorsal and ventral regions from 4 replicate samples each containing pooled data from 3-4 mice

Publication Title

Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28844
Differentially expressed genes after treatment with chemotherapy in breast cancer and their correlation with pathologic response
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional shift identifies a set of genes driving breast cancer chemoresistance.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE28826
Differentially expressed genes after treatment with chemotherapy in breast cancer and their correlation with pathologic bad response (Miller & Payne grades 1 and 2)
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of this study was to compare the gene expression profile changes breast tumors after the treatment with Anthracyclines and Taxanes. To this end, an oligonucleotide microarray was performed (Affymetrixs HG-U133 Plus 2.0 array). This gene expression study was carried out on the biopsied tumor samples previous being treated with chemotherapy, and subsequently compared with themselves once treatment schedule ended. The post-chemotherapy biopsy was obtained from the surgical piece. The goal of this study was the finding of several genes related to apoptosis, proliferation, differentiation, survival and transformation-related genes and correlating their differences in expression with the degree of response to chemotherapy, determined by the Miller and Payne histological grading system.

Publication Title

Transcriptional shift identifies a set of genes driving breast cancer chemoresistance.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact