refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 152 results
Sort by

Filters

Technology

Platform

accession-icon SRP118381
Measuring gene expression and RNA editing in Drosophila adapting to divergent microclimates 
  • organism-icon Drosophila melanogaster
  • sample-icon 63 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We performed RNA-seq to profile gene expression in the heads and whole bodies of 32 isofemale fly lines from two divergent microclimates at ''Evolution Canyon'' in Israel (16 fly lines from each microclimate). We also measured RNA editing levels in the head tissue of these flies. Overall design: For each of the 32 isofemale fly lines from ''Evolution Canyon'', gene expression profiles of whole bodies and heads, along with RNA editing profiles of heads of 3-5 day old male flies through RNA-seq.

Publication Title

Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimates.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE36890
Critical Role of STAT5 Transcription Factor Tetramerization for Cytokine Responses and Normal Immune Function
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE36888
Critical Role of STAT5 Transcription Factor Tetramerization for Cytokine Responses and Normal Immune Function (RNA)
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cytokine-activated STAT proteins dimerize and bind to high-affinity motifs, and N-terminal domain-mediated oligomerization of dimers allows tetramer formation and binding to low-affinity tandem motifs, but the functions of dimers versus tetramers are unknown. We generated Stat5a and Stat5b double knock-in (DKI) N-domain mutant mice that form dimers but not tetramers, identified cytokine-regulated genes whose expression required STAT5 tetramers, and defined consensus motifs for dimers versus tetramers. Whereas Stat5- deficient mice exhibited perinatal lethality, DKI mice were viable, indicating that STAT5 dimers were sufficient for survival. Nevertheless, STAT5 DKI mice had fewer CD4+CD25+ T cells, NK cells, and CD8+ T cells, with impaired cytokine-induced proliferation and homeostatic proliferation of CD8+ T cells. DKI CD8+ T cell proliferation following viral infection was diminished and DKI Treg cells did not efficiently control colitis. Thus, tetramerization of STAT5 is dispensable for survival but is critical for cytokine responses and normal immune function.

Publication Title

Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon E-MEXP-749
Transcription profiling by array of Arabidopsis after treatment with benzyladenine
  • organism-icon Arabidopsis thaliana
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

10 day old seedlings were treated with 5uM of the cytokinin Benzyladenine(BA)or DMSO at 15min, 45min, 120min, 480min and 1440min

Publication Title

Expression profiling of cytokinin action in Arabidopsis.

Sample Metadata Fields

Age, Compound, Time

View Samples
accession-icon GSE37645
The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pancreatic ductal adenocarcinoma (PDAC) is a nearly uniformly lethal malignancy, with most patients facing an adverse clinical outcome. Given the pivotal role of aberrant Notch signaling in the initiation and progression of PDAC, we investigated the effect of MRK-003, a potent and selective -secretase inhibitor, in preclinical PDAC models. We used a panel of human PDAC cell lines, as well as patient-derived PDAC xenografts, to determine whether pharmacological targeting of the Notch pathway could inhibit pancreatic tumor growth and potentiate gemcitabine sensitivity. In vitro, MRK-003 treatment downregulated the canonical Notch target gene Hes-1, significantly inhibited anchorage independent growth, and reduced the subset of CD44+CD24+ and aldehyde dehydrogenase (ALDH)+ cells that have been attributed with tumor initiating capacity. Ex vivo pretreatment of PDAC cells with MRK-003 in culture significantly inhibited the subsequent engraftment in immunocompromised mice. In vivo, MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) patient-derived PDAC xenografts. Moreover, a combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared to gemcitabine alone in 4 of 9 (44%) PDAC xenografts. Baseline gene expression analysis of the treated xenografts indicated that upregulation of nuclear factor kappa B (NFB) pathway components was associated with the sensitivity to single MRK-003, while upregulation in B-cell receptor (BCR) signaling and nuclear factor erythroid-derived 2-like 2 (NRF2) pathway correlated with response to the combination of MRK-003 with gemcitabine. The preclinical findings presented here provide further rationale for small molecule inhibition of Notch signaling as a therapeutic strategy in PDAC.

Publication Title

The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-2127
Transcription profiling of yeast grown in gastric or duodenal medium to identify promoters that could be used to down-regulate genes used in the release of therapeutic proteins
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The use of yeast as a delivery system is an attractive option for the oral administration of therapeutic agents. We recently developed mutants of Saccharomyces cerevisiae capable of lysis upon conditional down-regulation of the expression of the cell wall genes PKC1 and SRB1. The lysis mechanism of the mutant is based on the use of the MET3 promoter, which, upon addition of methionine and cysteine, blocks transcription of SRB1 and PKC1. This strain has the potential to be an integral part of an oral yeast delivery system, in which there is lysis of yeasts in the human gut, followed by release of recombinant proteins for therapeutic use. In order to provide proof-of-principle, the system was evaluated testing the cells viability and lysis performance under conditions, which simulate those found in the human stomach and the duodenum. Upon incubation of yeast cells in these conditions, lysis could be induced and was accompanied by release of GFP reporter protein into the medium. However, the conditional lysis mechanism based on the MET3 promoter is not applicable in vivo. Therefore, alternative promoters suitable for in-vivo down-regulation of SRB1 and PKC1 were identified by a microarray experiments. The transcripts of genes ANB1, TIR1, and MF(ALPHA)2 were significantly reduced upon exposure of the yeast cells to conditions of the two gut compartments. Their promoters could be used to down-regulate SRB1/VIG9 and PKC1 in vivo to achieve lysis of the yeast in the gut to release cargo therapeutic proteins.

Publication Title

Conditional cell-wall mutants of Saccharomyces cerevisiae as delivery vehicles for therapeutic agents in vivo to the GI tract.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP186906
Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Here we show that biotin-labelled miR-34a can be loaded to AGO2, and AGO2 immunoprecipitation can pulldown biotinylated miR-34a (Bio-miR pulldown). RNA-sequencing (RNA-seq) of the Bio-miR pulldown RNAs efficiently identified miR-34a mRNA targets, which could be verified with luciferase assays. In contrast to the approach of Bio-miR pulldown, RNA-seq of miR-34a overexpression samples had limited value in identifying direct targets of miR-34a. It seems that pulldown of 30 -Biotin-tagged miRNA can identify bona fide microRNA targets at least for miR34a. Overall design: biotin-labelled miR-34a pulldown and RNA sequencing of miR-34a overexpression samples

Publication Title

Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon E-MEXP-2818
Transcription profiling by array of yeast desiccation stress response in a time series
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Response of Saccharomyces cerevisiae strain BY4741 to desiccation

Publication Title

Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae.

Sample Metadata Fields

Time

View Samples
accession-icon SRP162235
Kinetics of Adult hematopoietic stem cell differentiation in vivo
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Adult hematopoiesis has been studied in terms of progenitor differentiation potentials, whereas its kinetics in vivo is poorly understood. We combined inducible lineage tracing of endogenous adult hematopoietic stem cells (HSC) with flow cytometry and single-cell RNA sequencing to characterize early steps of hematopoietic differentiation in the steady state. Labeled cells, comprising primarily long-term HSC and some short-term HSC, produced megakaryocytic lineage progeny within one week, in a process that required only 2-3 cell divisions. Erythroid and myeloid progeny emerged simultaneously by 2 weeks, and included a progenitor population with expression features of both lineages. Myeloid progenitors at this stage showed diversification into granulocytic, monocytic and dendritic cell types, and rare intermediate cell states could be detected. In contrast, lymphoid differentiation was virtually absent within the first 3 weeks of tracing. These results show that continuous differentiation of HSC rapidly produces major hematopoietic lineages and cell types, and reveal fundamental kinetic differences between megakaryocytic, erythroid, myeloid and lymphoid differentiation. Overall design: We combined inducible lineage tracing of endogenous adult hematopoietic stem cells (HSC) with flow cytometry and single-cell RNA sequencing to characterize early steps of hematopoietic differentiation in the steady state.

Publication Title

Kinetics of adult hematopoietic stem cell differentiation in vivo.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30240
Expression data from 5 human cell lines exposed to IR (5 Gy)
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed transcriptional responses to ionizing radiation (IR) in 5 human cell lines to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles most of the responses were cell line-specific. Data analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively.

Publication Title

Transcriptional modulation induced by ionizing radiation: p53 remains a central player.

Sample Metadata Fields

Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact