refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 38 results
Sort by

Filters

Technology

Platform

accession-icon GSE65927
Early postnatal expression data from mouse skeletal muscle stem cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Satellite cells are the primary source of stem cells for skeletal muscle growth and regeneration. Since adult stem cell maintenance involves a fine balance between intrinsic and extrinsic mechanisms, we performed genome-wide chronological expression profiling to identify the transcriptomic changes involved during early postnatal growth till acquisition of satellite cell quiescence.

Publication Title

Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP115815
RNA-seq of FSHD and control immortalised myoblasts I
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

FSHD and control immortalised myoblasts show repression of Pax7 target genes Overall design: FSHD Myoblasts 54-2, 54-12, 54-A5, 16A and 12A and matched controls 54-6, 54-A10, 16U and 12U were plated at 312,000 cells per 12 well plate in proliferation media and cultured for 48 hours or until 100% confluent. RNA-sequencing was performed on high quality (RIN > 8.0) DNA free RNA.

Publication Title

PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE63860
Chronological expression data from mouse skeletal muscle stem cells
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Satellite cells are the primary source of stem cells for skeletal muscle growth and regeneration. Since adult stem cell maintenance involves a fine balance between intrinsic and extrinsic mechanisms, we performed genome-wide chronological expression profiling to identify the transcriptomic changes involved in acquisition of muscle stem cell characteristics.

Publication Title

Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP070499
Odd skipped-related 1 (Osr1) identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We sequenced total RNAs that were extracted from Osr1-expressing cells isolated by FACS-sorting from E13.5 limbs of two heterozygous (Osr1 GCE/+) and two homozygous (Osr1 GCE/GCE) mouse embryos. Overall design: Gene expression profiling of Osr1-expressing cells at E13.5

Publication Title

Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP116047
Impact of B16F0 exosomes on the transcriptome of CTLL2 cytotoxic T cells
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As an emerging mode of intercellular communication, exosomes secreted by malignant cells can deliver a complex payload of coding and non-coding RNA to cells within the tumor microenvironment. Here, we quantified the RNA payload within tumor-derived exosomes and the resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from B16F0 melanoma cells were enriched for a subset of coding and non-coding RNAs that did not reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently co-expressed gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered mitochondrial respiration, which was confirmed independently, and upregulated genes associated with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic effect on downregulating target mRNA levels. Overall design: CTLL2 cells were grown in complete media for 24 hrs, and then stimulated with fresh B16F0 exosomes resuspended in PBS, to a final exosome concentration of 0.2 mg/ml. The transcriptome of untreated CTLL2 cells was assayed at 0, 0.5, 2, 4, and 8 hours after cells were placed in fresh media. There are 4 biological replicates at the 0 hour time point and 3 biological replicates at the 0.5, 2, 4, and 8 hour time points. The transcriptome of CTLL2 cells treated with B16F0 exosomes was assayed at 0.5, 2, 4, and 8 hours after addition of fresh media containing B16F0 exosomes. There were 3 biological replicates performed at each time point.

Publication Title

Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE6875
Development of Regulatory T cell Precursors in the Absence of a Functional Foxp3 Protein
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To analyze gene expression in in regulatory T cell precursors that develop in the absence of a functional Foxp3 protein as compared to that of normal regulatory T cells

Publication Title

Regulatory T cell development in the absence of functional Foxp3.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10255
Gene expression in primary acute lymphoblastic leukemia (ALL) associated with methotrexate treatment response
  • organism-icon Homo sapiens
  • sample-icon 158 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Genome-wide assessment of gene expression in primary acute lymphoblastic leukemia cells was performed to identify genomic determinants of MTXs antileukemic effects. Reduction of circulating leukemia cells after in vivo methotrexate treatment served as a measure MTX's antileukemic effects.

Publication Title

In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2351
chemotherapy cross-resistance and treatment response in childhood acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 129 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Acute lymphoblastic leukemia (ALL) can be cured with combination chemotherapy in over 75% of children, but the cause of treatment failure in the remaining patients is unknown. We determined the sensitivity of ALL cells to individual antileukemic agents in 441 patients, and used a genome-wide approach to identify 45 genes differentially expressed in ALL exhibiting cross-resistance to prednisolone, vincristine, asparaginase and daunorubicin. We also identified a distinct phenotype of discordant resistance to asparaginase and vincristine and 139 genes whose expression was associated with this novel phenotype. The expression of these genes discriminated treatment outcome in two independent patient populations, identifying a subset of patients with a markedly inferior outcome (37%13% 5-year DFS).

Publication Title

Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17195
Germline genomic variations associated with childhood acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We identified germline single nucleotide polymorphisms (SNPs) associated with childhood acute lymphoblastic leukemia (ALL) and its subtypes. Using the Affymetrix 500K Mapping array and publicly available genotypes, we identified 18 SNPs whose allele frequency differed (P<1x10-5) between a pediatric ALL population (n=317) and non-ALL controls (n=17,958). Six of these SNPs differed (P0.05) in allele frequency among four ALL subtypes. Two SNPs in ARID5B not only differed between ALL and non-ALL groups (rs10821936, P=1.4x10-15, odds ratio[OR]=1.91; rs10994982, P=5.7x10-9, OR=1.62) but also distinguished B-hyperdiploid ALL from other subtypes (rs10821936, P=1.62 x10-5, OR=2.17; rs10994982, P=0.003, OR 1.72). These ARID5B SNPs also distinguished B-hyperdiploid ALL from other subtypes in an independent validation cohort (n=124 children with ALL) (P=0.003 and P=0.0008, OR 2.45 and 2.86, respectively) and were associated with methotrexate accumulation and gene expression pattern in leukemic lymphoblasts. We conclude that germline genomic variations affect susceptibility to and characteristics of specific ALL subtypes.

Publication Title

Germline genomic variants associated with childhood acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE635
Identification of novel genomic determinants of cellular drug resistance in acute lymphoblastic leukemia.
  • organism-icon Homo sapiens
  • sample-icon 173 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Cellular drug resistance is associated with an unfavorable prognosis in pediatric acute lymphoblastic leukemia (ALL). To identify genes conferring resistance to antileukemic agents, we analyzed the expression of >12,700 genes in sensitive and resistant ALL cells obtained at diagnosis from 174 patients. This revealed 42, 59, 54 and 22 genes (P0.001) that were differentially expressed in B-lineage ALL that was sensitive versus resistant to prednisolone, vincristine, asparaginase or daunorubicin, respectively, with prediction accuracies of 71-76%. Notably, 149 of the discriminating genes have not been previously associated with resistance to these anticancer agents. These included carbohydrate-metabolism and transcription-associated genes for prednisolone, cytoskeleton and extracellular matrix genes for vincristine, ribosomal protein and translation-associated genes for asparaginase, and RAS signaling and nucleosome remodeling complex genes for daunorubicin. The identification of novel genomic determinants of cellular drug resistance provides new insights for overcoming drug resistance in acute lymphoblastic leukemia.

Publication Title

Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact