refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 323 results
Sort by

Filters

Technology

Platform

accession-icon GSE51885
Liver mRNA microarray study for mice treated with various diets
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The goal of this study was to investigate the effects of vairous diets on the expression of genes involved in intermediary metabolism in liver. Adult wild type male mice (3 for each group) were fed with the corresponding diet for two weeks, and then liver samples were collected. Total RNA was isolated by the RNAzol B reagent, and pellet was disolved in DEPC-treated water. Total RNA was isolated using RNA Bee reagent (Tel-Test Inc., Friendswood, TX) per the manufacturers protocol. RNA concentrations were quantified using a NanoDrop Spectrophotometer (NanoDrop Technologies, Wilmington, DE) at a wavelength of 260 nm. The integrity of the total RNA samples was evaluated by formaldehyde-agarose gel electrophoresis, and confirmed by visualization of 18S and 28S rRNA bands. The gene expression was determined by Affymetrix Mouse 430 2.0 Gene Expression Microarray. Nine different diets were used: Diet 1. TD.84224. EFA Deficient diet; Diet 2. TD 97070. High fat diet: Diet 3. TD.88137. Adjusted Calories Diet (42% from fat) (Western Diet); Diet 4. TD.02028. Atherogenic Rodent Diet; Diet 5. TD.89247. 60% Fructose Diet; Diet 6. TD.94048. AIN-93M Purified Diet, Diet 7. Current rodent diet used in LAR; Diet 8. DHA-supplemented diet; Diet 9. Diet-restriction: 75% of the diet consumed by ad lib feeding. Mice (n=3/diet) were fed one of these diets (Harlan Laboratories) for 3 weeks. All mice were euthanized in the morning (8:0010:00 A.M.) and blood and tissue samples were collected. All procedures were approved in accordance with Institutional Animal Care and Use Committee guidelines.

Publication Title

Effect of diet on expression of genes involved in lipid metabolism, oxidative stress, and inflammation in mouse liver-insights into mechanisms of hepatic steatosis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP110156
SYSTEMS ANALYSIS OF THE LIVER TRANSCRIPTOME IN ADULT MALE ZEBRAFISH EXPOSED TO THE PLASTICIZER (2-ETHYLHEXYL) PHTHALATE (DEHP).
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

We report the effects of exposure to the endocrine disurptor (2-ethylhexyl) phthalate (DEHP) on transcriptome modification in the livers of in vivo Zebrafish. Our data indicate changes in fatty acid metabolism and insulin resistance, pathways associated with the development of Non-Alcoholic Fatty Liver Disease (NAFLD). Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.

Publication Title

Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056220
Effect of OVO-like 1 knockdown on global transcript expression in differentiated BeWo trophoblast cells
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We had previously discovered that the transcription factor OVO-like 1 (OVOL1) was highly induced during trophoblast differentiation. In this study, we used an lentiviral shRNA strategy to decrease OVOL1 expression in BeWo trophoblast cells. Control cells were transduced with shRNAs targeting no known mammalian transcript (shCont). Following stimulation of differentiation (48h exposure to 8-bromo-cyclic adenosine monophosphate), a RNA-seq approach was used to determine global transcript differences in OVOL1-knockdown cells compared to control cells. Overall design: Trophoblast cells transduced with control shRNAs were used as controls. Cells transduced with shRNAs targeting OVOL1 were used as treatment. All cells received 250 uM 8-bromo-cyclic adenosine monophosphate to stimulate differentiation. Three independent replicates of control and treatment groups were analyzed.

Publication Title

OVO-like 1 regulates progenitor cell fate in human trophoblast development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66840
Gene expression in undifferentiated or cyclic adenosine monophosphate-exposed BeWo trophoblast cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BeWo trophoblast cells differentiate in response to expsure to cyclic adenosine monophosphate (cAMP) analogs. Differentiation includes syncytialization (fusion) and hormonogenesis. The goal of this study was to globally determine transcripts differentially expressed in BeWo trophoblast cells following a 24-h exposure to 250 uM 8-bromo-cAMP.

Publication Title

OVO-like 1 regulates progenitor cell fate in human trophoblast development.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP127390
RNA profiling of the liver and gut tissues in zebrafish (Danio rerio) [mRNA]
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Compared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq. Overall design: Examination of transcriptome in an in vivo model organism in two defined tissues, liver and gut.

Publication Title

Interplay Between MicroRNAs and Targeted Genes in Cellular Homeostasis of Adult Zebrafish (<i>Danio rerio</i>).

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE29247
Expression data from junctional zone of placenta in Brown Norway and Holtzman-Sprague Dawley rat strains at gestation day 18.5
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Placentation differs in the BN rat strain when compared to HSD and DSS rat strains. Intrauterine trophoblast invasion is shallow and the junctional zone is underdeveloped in the BN rat. These structural differences are striking but their quantification is not conducive to high throughput analyses. In the rat, the junctional zone can be readily dissected and is more homogenous than other components of the placentation site. HSD and BN rat gestation day 18.5 junctional zone gene expression profiles were determined using DNA microarray analysis to identity placenta-associate quantitate traits.

Publication Title

Chromosome-substituted rat strains provide insights into the genetics of placentation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP114404
The plasticizer Bisphenol A favors cancer progression in adult zebrafish by perturbing the epigenome: A systems level analysis of the miRNome (mRNA).
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs, are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops disease that resembles human cancer. Using zebrafish as systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 21 day exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6,188 mRNAs and 15 miRNAs were differently expressed (q = 0.1). By analyzing human orthologs of the DE zebrafish genes signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome in adult zebrafish and has the potential to cause adverse outcomes including cancer. Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.

Publication Title

The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4406
Gene expression profiling of CD4+ T-cells and GM6990 lymphoblastoid cell lines
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD4+ T-cells isolated from three normal individuals and GM6990 cell lines (three biological replicates) are compared

Publication Title

DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE80339
Gene expression analysis of ambient or 0.5% oxygen exposed rat trophoblast stem (TS) cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Analysis of transcriptomic profile of TS cells grown in ambient (21% oxygen) and hypoxic (0.5% oxygen) conditions.

Publication Title

HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE80340
Gene expression analysis of ambient or 10.5% oxygen exposed rat gestation d13.5 metrial gland tissues. The animals were exposed to low oxygen from gestation day 6.5 to 13.5.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Analysis of transcriptomic profile of metrial gland tissue in ambient (21% oxygen) and hypoxic (10.5% oxygen) conditions.

Publication Title

HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact