refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 51 results
Sort by

Filters

Technology

Platform

accession-icon GSE18590
DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is uncharacterized. Here we show that DNMT1 is essential for supporting epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. These effects correlated with DNA methylation as genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation.

Publication Title

DNMT1 maintains progenitor function in self-renewing somatic tissue.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE79485
Expression data of differentially regualted genes in TH-MYCN mouse tumors after immunotherapy
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

In order to understand differentially regulated gene expression after the different treatments, 4 size matched tumors of each group were analyzed by microarrays.

Publication Title

Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68882
caArray_geral-00117: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

The identification of genes that contribute to the biological basis for clinical heterogeneity and progression of prostate cancer is critical to accurate classification and appropriate therapy. We performed a comprehensive gene expression analysis of prostate cancer using oligonucleotide arrays with 63,175 probe sets to identify genes and expressed sequences with strong and uniform differential expression between nonrecurrent primary prostate cancers and metastatic prostate cancers. The mean expression value for >3,000 tumor-intrinsic genes differed by at least 3-fold between the two groups. This includes many novel ESTs not previously implicated in prostate cancer progression. Many differentially expressed genes participate in biological processes that may contribute to the clinical phenotype. One example was a strong correlation between high proliferation rates in metastatic cancers and overexpression of genes that participate in cell cycle regulation, DNA replication, and DNA repair. Other functional categories of differentially expressed genes included transcriptional regulation, signaling, signal transduction, cell structure, and motility. These differentially expressed genes reflect critical cellular activities that contribute to clinical heterogeneity and provide diagnostic and therapeutic targets.

Publication Title

Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE94601
Molecular profiling of 159 primary lung carcinomas
  • organism-icon Homo sapiens
  • sample-icon 159 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Molecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644

Publication Title

Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE3218
Expression Profiling of Adult Male Germ Cell Tumors
  • organism-icon Homo sapiens
  • sample-icon 214 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Expression profiling of a panel of 101 adult male germ cell tumors and 5 normal testis specimens was performed on Affymetrix U133A and U133B microarrays. This data has been used to:

Publication Title

Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10783
Validation Set for Prediction of Outcome in Adult Male Germ Cell Tumors
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This series represents expression profiles of 34 non-seminoma germ cell tumors (NSGCTs) from patients who received cisplatin based chemotherarpy for treatment of their disease for whom full clinical follow-up information was available. These specimens were used as a validation set to test outcome prediction models using a subset of previously profiled GCT specimens (see GEO accession #GSE3218).

Publication Title

Identification and validation of a gene expression signature that predicts outcome in adult men with germ cell tumors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23631
RCC cell lines and paired tumors
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE23629
Expression data from RCC paired tumors to study metastasis progression
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study investigates the molecular signatures that drive Renal Cell Carcinoma (RCC) metastatic conversion using the 16 paired Human tumor samples.

Publication Title

Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE15299
Modeling Inducible Human Tissue Neoplasia Identifies an ECM Interaction Network Involved in Cancer Progression
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To elucidate mechanisms of cancer progression, we generated inducible human neoplasia in 3-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends upon specific ECM-interacting network hubs. Blockade of one such hub, the b1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.

Publication Title

Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP009270
MIWI catalysis is required for piRNA amplification-independent LINE1 transposon silencing [deep sequencing]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Illumina Genome Analyzer IIx

Description

Here we show that MIWI is a small RNA-guided ribonuclease (Slicer) that requires extensive complementarity for target cleavage in vitro. Disruption of its catalytic activity in mice by a single point mutation results in male infertility and displays increased accumulation of LINE1 transposon transcripts. Overall design: MIWI-associated piRNAs from different genotypes were sequenced. Total RNA from purified round spermatids were subjected to Ribozero purification and strand-specific RNAseq lib prepared. Global 5'' RACE library was prepare from indicated genotypes.

Publication Title

Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact