refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 474 results
Sort by

Filters

Technology

Platform

accession-icon GSE26920
Iron Chelators Treatment on DMS-53 Human Lung Cancer Cell
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-depletion and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and Dp44mT). These studies are important for understanding the molecular and cellular effects of iron-depletion.

Publication Title

Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE9076
Rat prostate cancer cells with high Ndrg-1 and vector control - analysis of differentially expressed genes
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

AT6.1 cells transfected to over-express Ndrg-1 were compared with AT6.1 vector control cells in a microarray analysis. The aim of the study was to identify differentially expressed genes between the two cell lines, as these may be modulated by Ndrg-1.

Publication Title

The iron-regulated metastasis suppressor, Ndrg-1: identification of novel molecular targets.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE42658
Expression profiles for paediatric brain tumours
  • organism-icon Homo sapiens
  • sample-icon 73 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon GSE42656
Gene expression profiles for paediatric brain tumours
  • organism-icon Homo sapiens
  • sample-icon 73 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

In this study, we screened a cohort of 57 paediatric brain tumours, with a wide range of pathologies to identify gene expression profiles

Publication Title

Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon SRP156618
Transcriptomic profile of crwn mutants (CROWDED NUCLEI)
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-seq data of crwn1, crwn2, crwn4, crwn1 crwn2 and crwn1 crwn4

Publication Title

Loss of CRWN Nuclear Proteins Induces Cell Death and Salicylic Acid Defense Signaling.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE5460
Predicting Features of Breast Cancer with Gene Expression Patterns
  • organism-icon Homo sapiens
  • sample-icon 125 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Predictors built from gene expression data accurately predict ER, PR, and HER2 status, and divide tumor grade into high-grade and low-grade clusters; intermediate-grade tumors are not a unique group. In contrast, gene expression data cannot be used to predict tumor size or lymphatic-vascular invasion.

Publication Title

Predicting features of breast cancer with gene expression patterns.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15872
Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In the adult mouse, distinct morphological and transcriptional differences separate stomach from intestinal epithelium. Remarkably, the epithelial boundary between these two organs is literally one cell thick. This discrete junction is established suddenly and precisely at embryonic day (E) 16.5, by sharpening a previously diffuse intermediate zone. In the present study, we define the dynamic transcriptome of stomach, pylorus and intestinal tissues between E14.5 and E16.5. We show that establishment of this boundary is concomitant with the induction of over a thousand genes in intestinal epithelium, and these gene products provide intestinal character. Hence, we call this process intestinalization. We identify specific transcription factors (Hnf4g, Creb3l3 and Tcfec) and examine signaling pathways (Hedgehog and Wnt) that may play a role in this process. Finally, we define a unique expression domain at the pylorus itself and detect novel pylorus-specific patterns for the transcription factor Gata3 and the secreted protein nephrocan.

Publication Title

Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6833
Hyperexpression and Downregulation of Melanotransferrin on Various Cell Lines
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE35593
Foxo1/3 depletion in granulosa cells reveals novel mechanisms controlling follicle growth and death and endocrine regulation of pituitary FSH.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Foxo transcription factors regulate multiple cellular functions. Foxo1 and Foxo3 are highly expressed in granulosa cells of ovarian follicles. Selective depletion of the Foxo1 and Foxo3 genes in granulosa cells revealed a novel ovarian-pituitary endocrine feedback loop characterized by: 1) undetectable levels of serum FSH but not LH, 2) reduced expression of the pituitary Fshb gene and its transcriptional regulators and 3) ovarian production of a factor(s) that suppresses pituitary cell Fshb. Equally notable and independent of FSH, depletion of Foxo1/3 altered the expression of specific genes associated with follicle growth versus apoptosis by disrupting critical regulatory interactions of Foxo1/3 with the activin and BMP2 pathways, respectively. As a consequence, granulosa cell proliferation and apoptosis were decreased. These data provide the first evidence that Foxo1/3 divergently regulate follicle growth or death by interacting with the activin and BMP pathways in granulosa cells and by modulating pituitary FSH production.

Publication Title

FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE6815
Hyperexpression of Mouse Melanotransferrin on LMTK Cell Line
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melanoma tumor antigen p97 or melanotransferrin (MTf) is an iron (Fe)-binding protein with high homology to serum transferrin. MTf is expressed at very low levels in normal tissues and in high amounts in melanoma cells. The over-expression of MTf in tumor cells was hypothesized to assist rapidly proliferating neoplastic cells with their increased Fe requirements. However, our recent characterization of the MTf knockout (MTf -/-) mouse demonstrated that MTf did not have an essential role in Fe metabolism. To understand the function of MTf, we utilized whole-genome microarray analysis to examine the gene expression profile of five models after modulating MTf expression. These models included two new stably transfected MTf hyper-expression models (SK-N-MC neuroepithelioma and LMTK- fibroblasts) and one cell type (SK-Mel-28 melanoma) where MTf was down-regulated by post-transcriptional gene silencing. These findings were compared to alterations in gene expression identified using the MTf -/- mouse. In addition, the changes identified from the gene array data were also assessed in a new model of MTf down-regulation in SK-Mel-2 melanoma cells. In the cell line models, MTf hyper-expression led to increased cellular proliferation, while MTf down-regulation resulted in decreased proliferation. Across all five models of MTf down- and up-regulation, we identified three genes modulated by MTf expression. These included ATP-binding cassette sub-family B member 5 (Abcb5), whose change in expression mirrored MTf down- or up-regulation. In addition, thiamine triphosphatase (Thtpa) and transcription factor 4 (Tcf4) were inversely expressed relative to MTf levels across all five models. The products of these three genes are involved in membrane transport, thiamine phosphorylation and cell proliferation/survival, respectively. This study identifies novel molecular targets directly or indirectly regulated by MTf and potential pathways involved in its function. These molecular targets could be involved, at least in part, to the role of MTf in modulating proliferation.

Publication Title

Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact