refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 474 results
Sort by

Filters

Technology

Platform

accession-icon GSE26920
Iron Chelators Treatment on DMS-53 Human Lung Cancer Cell
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-depletion and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and Dp44mT). These studies are important for understanding the molecular and cellular effects of iron-depletion.

Publication Title

Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE9076
Rat prostate cancer cells with high Ndrg-1 and vector control - analysis of differentially expressed genes
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

AT6.1 cells transfected to over-express Ndrg-1 were compared with AT6.1 vector control cells in a microarray analysis. The aim of the study was to identify differentially expressed genes between the two cell lines, as these may be modulated by Ndrg-1.

Publication Title

The iron-regulated metastasis suppressor, Ndrg-1: identification of novel molecular targets.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE5460
Predicting Features of Breast Cancer with Gene Expression Patterns
  • organism-icon Homo sapiens
  • sample-icon 125 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Predictors built from gene expression data accurately predict ER, PR, and HER2 status, and divide tumor grade into high-grade and low-grade clusters; intermediate-grade tumors are not a unique group. In contrast, gene expression data cannot be used to predict tumor size or lymphatic-vascular invasion.

Publication Title

Predicting features of breast cancer with gene expression patterns.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6833
Hyperexpression and Downregulation of Melanotransferrin on Various Cell Lines
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE6815
Hyperexpression of Mouse Melanotransferrin on LMTK Cell Line
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melanoma tumor antigen p97 or melanotransferrin (MTf) is an iron (Fe)-binding protein with high homology to serum transferrin. MTf is expressed at very low levels in normal tissues and in high amounts in melanoma cells. The over-expression of MTf in tumor cells was hypothesized to assist rapidly proliferating neoplastic cells with their increased Fe requirements. However, our recent characterization of the MTf knockout (MTf -/-) mouse demonstrated that MTf did not have an essential role in Fe metabolism. To understand the function of MTf, we utilized whole-genome microarray analysis to examine the gene expression profile of five models after modulating MTf expression. These models included two new stably transfected MTf hyper-expression models (SK-N-MC neuroepithelioma and LMTK- fibroblasts) and one cell type (SK-Mel-28 melanoma) where MTf was down-regulated by post-transcriptional gene silencing. These findings were compared to alterations in gene expression identified using the MTf -/- mouse. In addition, the changes identified from the gene array data were also assessed in a new model of MTf down-regulation in SK-Mel-2 melanoma cells. In the cell line models, MTf hyper-expression led to increased cellular proliferation, while MTf down-regulation resulted in decreased proliferation. Across all five models of MTf down- and up-regulation, we identified three genes modulated by MTf expression. These included ATP-binding cassette sub-family B member 5 (Abcb5), whose change in expression mirrored MTf down- or up-regulation. In addition, thiamine triphosphatase (Thtpa) and transcription factor 4 (Tcf4) were inversely expressed relative to MTf levels across all five models. The products of these three genes are involved in membrane transport, thiamine phosphorylation and cell proliferation/survival, respectively. This study identifies novel molecular targets directly or indirectly regulated by MTf and potential pathways involved in its function. These molecular targets could be involved, at least in part, to the role of MTf in modulating proliferation.

Publication Title

Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE6817
Downregulation of Human Melanotransferrin on SK-Mel-28 Cell Line
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melanoma tumor antigen p97 or melanotransferrin (MTf) is an iron (Fe)-binding protein with high homology to serum transferrin. MTf is expressed at very low levels in normal tissues and in high amounts in melanoma cells. The over-expression of MTf in tumor cells was hypothesized to assist rapidly proliferating neoplastic cells with their increased Fe requirements. However, our recent characterization of the MTf knockout (MTf -/-) mouse demonstrated that MTf did not have an essential role in Fe metabolism. To understand the function of MTf, we utilized whole-genome microarray analysis to examine the gene expression profile of five models after modulating MTf expression. These models included two new stably transfected MTf hyper-expression models (SK-N-MC neuroepithelioma and LMTK- fibroblasts) and one cell type (SK-Mel-28 melanoma) where MTf was down-regulated by post-transcriptional gene silencing. These findings were compared to alterations in gene expression identified using the MTf -/- mouse. In addition, the changes identified from the gene array data were also assessed in a new model of MTf down-regulation in SK-Mel-2 melanoma cells. In the cell line models, MTf hyper-expression led to increased cellular proliferation, while MTf down-regulation resulted in decreased proliferation. Across all five models of MTf down- and up-regulation, we identified three genes modulated by MTf expression. These included ATP-binding cassette sub-family B member 5 (Abcb5), whose change in expression mirrored MTf down- or up-regulation. In addition, thiamine triphosphatase (Thtpa) and transcription factor 4 (Tcf4) were inversely expressed relative to MTf levels across all five models. The products of these three genes are involved in membrane transport, thiamine phosphorylation and cell proliferation/survival, respectively. This study identifies novel molecular targets directly or indirectly regulated by MTf and potential pathways involved in its function. These molecular targets could be involved, at least in part, to the role of MTf in modulating proliferation.

Publication Title

Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE6816
Hyperexpression of Human Melanotransferrin on SK-N-MC Cell Line
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melanoma tumor antigen p97 or melanotransferrin (MTf) is an iron (Fe)-binding protein with high homology to serum transferrin. MTf is expressed at very low levels in normal tissues and in high amounts in melanoma cells. The over-expression of MTf in tumor cells was hypothesized to assist rapidly proliferating neoplastic cells with their increased Fe requirements. However, our recent characterization of the MTf knockout (MTf -/-) mouse demonstrated that MTf did not have an essential role in Fe metabolism. To understand the function of MTf, we utilized whole-genome microarray analysis to examine the gene expression profile of five models after modulating MTf expression. These models included two new stably transfected MTf hyper-expression models (SK-N-MC neuroepithelioma and LMTK- fibroblasts) and one cell type (SK-Mel-28 melanoma) where MTf was down-regulated by post-transcriptional gene silencing. These findings were compared to alterations in gene expression identified using the MTf -/- mouse. In addition, the changes identified from the gene array data were also assessed in a new model of MTf down-regulation in SK-Mel-2 melanoma cells. In the cell line models, MTf hyper-expression led to increased cellular proliferation, while MTf down-regulation resulted in decreased proliferation. Across all five models of MTf down- and up-regulation, we identified three genes modulated by MTf expression. These included ATP-binding cassette sub-family B member 5 (Abcb5), whose change in expression mirrored MTf down- or up-regulation. In addition, thiamine triphosphatase (Thtpa) and transcription factor 4 (Tcf4) were inversely expressed relative to MTf levels across all five models. The products of these three genes are involved in membrane transport, thiamine phosphorylation and cell proliferation/survival, respectively. This study identifies novel molecular targets directly or indirectly regulated by MTf and potential pathways involved in its function. These molecular targets could be involved, at least in part, to the role of MTf in modulating proliferation.

Publication Title

Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29156
Serous ovarian benign tumor and type II carcinoma data set for expression and paracrine signaling investigation
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

A data set of normal epithelium, serous ovarian surface epithelial-stromal tumors (benign and type II malignancies), stroma distal to tumor, and stroma adjacent to tumor (50 samples total). Additional cel files are included which represent replicate sampling from patients, and cel files that failed quality control but may be bioinformatically interesting. Additional replicate or failed cel files were not included in the final analysis (and so these samples were not included in the matrix).

Publication Title

Dysregulation of AKT3 along with a small panel of mRNAs stratifies high-grade serous ovarian cancer from both normal epithelia and benign tumor tissues.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon E-MEXP-2291
Transcription profiling of bovine nucleus pulposus, carticular cartilage and annulus fibrosus cells to further determine expression in normal and degenerate human intervertebral disc
  • organism-icon Bos taurus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The aim of this transcription profiling study was to identify novel genes that could be used to distinguish bovine Nucleus pulposus (NP) cells from articular cartilage (AC) and annulus fibrosus (AF) cells and to further determine their expression in normal and degenerate human intervertebral disc (IVD). This study has identified a number of novel genes that characterise the bovine and human NP and IVD cell phenotypes and allows for discrimination between AC, AF and NP cells.<br></br><br></br>

Publication Title

Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17832
Iron Chelators Treatment on MCF-7 Human Breast Cancer Cell
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Iron-deficiency affects 500 million people, yet the molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-deficiency and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone) that have markedly different permeability properties. Sixteen genes were significantly regulated by both chelators, while a further 50 genes were regulated by either ligand. Most of the genes identified in this study have not been previously described to be iron-regulated and are important for understanding the molecular and cellular effects of iron-deficiency.

Publication Title

Iron chelator-mediated alterations in gene expression: identification of novel iron-regulated molecules that are molecular targets of hypoxia-inducible factor-1 alpha and p53.

Sample Metadata Fields

Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact