refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 474 results
Sort by

Filters

Technology

Platform

accession-icon GSE42867
Gene expression changes in subclones of a Burkitt lymphoma cell line with different patterns of EBV latent infection
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we have investigated the gene expression profiles of three different types of subclone all generated by single cell cloning of the same parental EBV positive Burkitt lymphoma cell line Awia-BL. These included EBV negative clones which have lost the virus episome, EBV positive clones with a conventional Latency I form of infection and EBV positive clones with an atypical Wp-restricted form of infection.

Publication Title

Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP144725
Transcriptomic Analysis of Wild Type and FOXA2-/- ES-derived Pancreatic Progenitors
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptomic Analysis of Wild Type and FOXA2-/- ES-derived Pancreatic Progenitors Overall design: Examination of triplicates per genotypes for each differentiation stage

Publication Title

FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE40973
Expression profiling of uninfected and Golovinomyces orontii infected Arabidopsis thaliana wild type Col-0 and del1-1 mutant
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In plants, the activation of immunity is often inversely correlated with growth. Mechanisms that plant growth in the context of pathogen challenge and immunity are unclear. Investigating Arabidopsis infection with the powdery mildew fungus, we find that the Arabidopsis atypical E2F DEL1, a transcriptional repressor known to promote cell proliferation, represses accumulation of the hormone salicylic acid (SA), an established regulator of plant immunity. DEL1 deficient plants are more resistant to pathogens and slightly smaller than wild type. The resistance and size phenotypes of DEL1 deficient plants are due to the induction of SA and activation of immunity in the absence of pathogen challenge. Moreover, Enhanced Disease Susceptibility 5 (EDS5), a SA transporter required for elevated SA and immunity, is a direct repressed target of DEL1. Together, these findings indicate that DEL1 control of SA levels contributes to regulating the balance between growth and immunity in developing leaves.

Publication Title

Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE3711
Mouse mammary cell types
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Gene Expression Profiling of Murine Mammary Stem Cells and Differentiated Derivatives.

Publication Title

Purification and unique properties of mammary epithelial stem cells.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP074235
Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor ß (ERß) Response to 5a-reductase Inhibition in Prostate Epithelial Cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor (AR) driven, inflammatory disorder affecting elderly men, include 5a-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent AR ligand dihydrotestosterone (DHT). Since DHT is the precursor for estrogen receptor ß (ERß) ligands, 5AR inhibitors could potentially limit ERß activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell-adhesion protein E-cadherin by the 5AR inhibitor, dutasteride, requires both ERß and TGFß. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative-feedback loop in TGFß and ERß signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERß action through its effect on the expression of a number of steroidogenic enzymes in the ERß-ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue protective action of ERß. Overall design: Next-generation sequencing (n=3) of shRNA mediated knockdown of COX-2 or scrambled control in BPH-1 prostate epithelial cell line

Publication Title

Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP090989
Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor
  • organism-icon Mus musculus
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

In this study we investigated the effect of normal chow (0 % cholesterol) or a semisynthetic diet (high sugar, 0.02 % cholesterol) fed to mice lacking either Mc4r, Ldlr or both and wildtype animals (total of 4 genotypes) by generating an expression profile of their livers after 6 months by RNA sequencing. Overall design: We investigated mice lacking either Mc4r, Ldlr or both and wildtype animals fed with normal chow or a semisynthetic diet with 10 replicates for each of the 8 resulting groups (4 genotypes * 2 diets).

Publication Title

Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP044222
The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice
  • organism-icon Mus musculus
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIlluminaHiScanSQ

Description

UDP-sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor (GPCR) P2Y14 (GPR105) was found to bind extracellular UDP and UDP-sugars. Little is known about the physiological functions of this GPCR. To study its physiological role we used a gene-deficient (KO) mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung and uterus. Among other phenotypical differences KO mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets highlighting P2Y14 as a new modulator of proper insulin secretion. Overall design: 10 samples from pancreatic islets isolated from wildtype mice; 10 samples from pancreatic islets isolated from P2Y14-knockout mice

Publication Title

The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045072
Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles Polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing de-repression of PRC2 target genes and developmental perturbations. Similarly, a H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M nucleosomes and its overexpression in Drosophila results in loss of H3K9 methylation levels and heterochromatic silencing defects. Here we establish histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin-signaling pathways. Overall design: RNA-seq of wing imaginal discs expressing either H3.3WT-FLAG-HA or H3.3K27M-FLAG-HA.

Publication Title

Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE109471
Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.

Publication Title

Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP015113
Mechanistic and structural insight into the functional dichotomy between interleukin-2 and interleukin-15
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Interleukin-15 (IL-15) and IL-2 possess distinct immunological functions despite both signaling through IL-2Rß and the common cytokine receptor ?-chain, ?c, We find that in the IL-15/IL-15Ra/IL-2Rß/?c quaternary complex structure, IL-15 heterodimerizes IL-2Rß and ?c identically to the IL-2/IL-2Ra/IL-2Rß/?c complex, despite differing receptor-binding chemistries. IL-15Ra dramatically increases the affinity of IL-15 for IL-2Rß, and this allostery is required for IL-15 trans-signaling versus IL-2 cis-signaling. Consistent with the identical IL-2Rß/?c dimer geometry, IL-2 and IL-15 exhibited similar signaling properties in lymphocytes, with any differences resulting from disparate receptor affinities. Thus, IL-15 and IL-2 induce similar signals, and the cytokine-specificity of IL-2Ra versus IL-15Ra determines cellular responsiveness. These results provide important new insights for specific development of IL-15- versus IL-2-based immunotherapeutics. Overall design: RNA-Seq is conducted in mouse CD8+ T cells, not treated or treated with IL2 or IL15 for indicated concentrations (1nM or 500nM) and times (4hr or 24hr).

Publication Title

Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact