refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 82 results
Sort by

Filters

Technology

Platform

accession-icon GSE61861
Defined conditions for the isolation and expansion of basal prostate stem cells of mouse and human origin
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE61860
Defined conditions for the isolation and expansion of basal prostate stem cells of mouse and human origin [mouse]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Isolation and culture of primary prostate epithelial stem/progenitor cells (PESC) has been proven difficult and ineffective. Here we present methods to grow and expand both murine and human basal PESCs long-term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin-Sca1+ CD49f+Trop2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin-CD49f+Trop2high PESCs. The gene expression profiles of expanded basal PESCs show similarities to ES cells and Lamin B1 and PRDX1 were identified as novel PESC markers. If transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules demonstrating their stem cell activity in vivo. The novel methods will facilitate the cellular, molecular and genomic characterization of normal and pathologic prostate glands of mouse and human origin.

Publication Title

Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61859
Defined conditions for the isolation and expansion of basal prostate stem cells of mouse and human origin [human]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

Isolation and culture of primary prostate epithelial stem/progenitor cells (PESC) has been proven difficult and ineffective. Here we present methods to grow and expand both murine and human basal PESCs long-term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin-Sca1+ CD49f+Trop2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin-CD49f+Trop2high PESCs. The gene expression profiles of expanded basal PESCs show similarities to ES cells and Lamin B1 and PRDX1 were identified as novel PESC markers. If transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules demonstrating their stem cell activity in vivo. The novel methods will facilitate the cellular, molecular and genomic characterization of normal and pathologic prostate glands of mouse and human origin.

Publication Title

Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE79350
Title: Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

A comprehensive omic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of IAS smooth muscle contractile phenotype and basal tone. MicroRNA profiling, genome wide expression, validation and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a and rno-miR-206 were found to be up-regulated in aging IAS. qRT-PCR confirmed the up-regulated expression of these miRNAs and down regulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, SRF, Smad1, Smad2, RhoA/ROCK2, Fn1, Sm22-v2, Klf4, and Acta2) involved in regulation of SM contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF and SM22 protein expression, RhoA-signaling, and a decrease in basal and agonist (U-46619 (thromboxane A2 analog))-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Lastly, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone, and suggests miR-133a is feasible therapeutic target in aging-associated rectoanal incontinence.

Publication Title

Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE16674
Analysis of gene expression in miR-34a overexpressing K562 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

miR-34a is strongly induced upon TPA-induced megakaryocyte differentiation of K562 cells. To investigate the gene networks regulated by this miRNA during the process of differentiation we performed gene microarray analysis in K562 cells overexpressing miR-34a or a control sequence.

Publication Title

miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29958
Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers.

Sample Metadata Fields

Age, Specimen part, Cell line

View Samples
accession-icon GSE29956
Gene expression analysis of prostate tumors arisen in TRAMP mice in which mast cells are pharmacologically stabilized or genetically ablated.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Analysis of gene expression of prostate tumors arisen in TRAMP mice in which mast cells are pharmacologically stabilized or genetically ablated.The hypothesis tested in the present study was that mast cells inhibition or absence impacted prostate tumor development and histotype. Results demonstrate that prostate tumors arisen in TRAMP mice in which mast cells are pharmacologically stabilized or genetically ablated have a neuroendocrine signature.

Publication Title

Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE29957
Gene expression analysis of 2 different prostate tumor cell lines isolated from 30 wks old TRAMP mice compared to normal prostate
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Analysis of gene expression of 2 novel prostate tumor cell lines isolated from TRAMP mice and compared to normal prostate. T1525 cell line is a well differentiated adenocarcinoma with epithelial features, whereas T23 cell line displays the molecular signature of epithelial-to-mesenchymal transition.

Publication Title

Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers.

Sample Metadata Fields

Age, Specimen part, Cell line

View Samples
accession-icon GSE13475
STOX1 overexpression in choriocarcinoma cells mimicks transcriptional alterations observed in preeclamptic placentas
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background

Publication Title

STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061434
Reversal of MECP2 duplication syndrome using genetic rescue and antisense oligonucleotides [Genetic Rescue Experiments]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

MECP2 duplication syndrome, a childhood neurological disorder characterized by autism, intellectual disability, motor dysfunction, anxiety and epilepsy, is caused by a duplication on chromosome Xq28 spanning the MECP2 gene that results in doubling of MeCP2 levels. MECP2 overexpression in mice causes neurobehavioral and electroencephalographic defects similar to those of human patients, but the gross anatomy of the brain remains unaffected. We hypothesized that MECP2 duplication syndrome would be reversible and tested two methods to restore MeCP2 levels to normal: conditional genetic recombination and antisense oligonucleotide therapy. Both approaches rescued molecular, physiological and behavioral features of adult symptomatic mice. Antisense therapy also restored normal MeCP2 levels in lymphoblastoid cells from MECP2 duplication patients, in a dose-dependent manner. Our data indicate that antisense oligonucleotides could provide a viable therapeutic approach for human MECP2 duplication syndrome as well as other disorders involving copy number gains. Overall design: Hippocampal mRNA profiles of conditional MECP2 overexpression and genetic rescue mice were generated by deep sequencing, in triplicate, using Illumina TruSeq.

Publication Title

Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact