refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE66824
Genomic and Clinical Effects Associated with a Relaxation Response Mind-Body Intervention in Patients with Irritable Bowel Syndrome and Inflammatory Bowel Disease
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Patients with chronic illnesses such as Irritable Bowel Syndrome (IBS) or Inflammatory Bowel Disease (IBD) often have reduced quality of life. IBS is characterized by abdominal pain/discomfort associated with altered bowel function, such as diarrhea or constipation, without gross structural changes or inflammation [1]; IBD is characterized by gross inflammation in the gastrointestinal (GI) tract which can result in symptoms such as abdominal pain, cramping, diarrhea and bloody stools. IBS and IBD can profoundly affect quality of life and are influenced by stress and resiliency.The impact of mind-body interventions (MBIs) on IBS and IBD patients has not previously been examined. In this study IBS and IBD patients were enrolled in a 9-week relaxation response based mind-body group intervention (RR-MBI), focusing on elicitation of the RR and cognitive skill building. We performed Peripheral blood transcriptome analysis to identify genomic correlates of the RR-MBI.

Publication Title

Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject, Time

View Samples
accession-icon GSE8966
Liver Transcriptome Profiles Associated with Strain-Specific Ehrlichia chaffeensisinduced Hepatitis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Infection of humans with Ehrlichia chaffeensis, the etiologic agent of human monocytic ehrlichiosis, can cause hepatitis of varying severity. When the three human isolates of E. chaffeensis, each belongs to different geno-groups, are inoculated into severe combined immunodeficiency mice, the severity of clinical signs and bacterial burden detected in the liver are strain Wakulla>Liberty>Arkansas. Disseminated and granulomatous inflammation is evident in the liver of mice infected with strains Wakulla and Arkansas, respectively, but not in mice infected with strain Liberty. In this paper, we used microarray analysis to define transcriptional profiles characteristic to the histopathological features in the mouse liver. Cytokine and chemokine profiles were strikingly different among three strains of E. chaffeensis: IFN-, CCL5, CXCL1, CXCL2, CXCL7 and CXCL9 were highly up-regulated with strain Arkansas, TNF-, CCL2, CCL3, CCL5, CCL6, CCL12, CCL20, CXCL2, CXCL7, CXCL9 and CXCL13 were highly up-regulated with strain Wakulla. With strain Liberty, only CXCL13 was highly up-regulated. In the livers infected with the Arkansas strain, monocytes/macrophages and NK cells were enriched in the granulomas and increase of NK cell-marker mRNAs was detected. Livers infected with the Wakulla strain displayed infiltration of significantly more neutrophils and increase of neutrophil-marker mRNAs. Genes up-regulated commonly in the liver infected with the three stains are other host innate immune and inflammatory response genes including several acute phase proteins. Genes down-regulated commonly are related to host physiologic functions. The results suggest that marked modulation of host cytokine and chemokine profiles by E. chaffeensis strains underlie the distinct host liver disease.

Publication Title

Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP104167
Western diet triggers NLRP3-dependent persistent functional reprogramming of myeloid cells [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Here we investigated whether sterile triggers of inflammation  induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undectable in serum soon after mice were shifted back to chow diet (CD). In contrast, myeloid cell responses towards innate stimuli remained broadly augmented. WD induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells, leading to increased proliferation as well as enhanced innate immune and interferon responses towards in vivo LPS challenge. QTL analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with LPS suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/--deficient mice lacked WD-induced systemic inflammation or myeloid progenitor proliferation and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby arbitrate the potentially deleterious effects of trained immunity in inflammatory diseases. Overall design: Examination of GMPs in six different conditions by RNA-seq

Publication Title

Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP124807
Western diet triggers NLRP3-dependent persistent functional reprogramming of myeloid cells II [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Here we investigated whether sterile triggers of inflammation  induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undectable in serum soon after mice were shifted back to chow diet (CD). In contrast, myeloid cell responses towards innate stimuli remained broadly augmented. WD induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells, leading to increased proliferation as well as enhanced innate immune and interferon responses towards in vivo LPS challenge. QTL analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with LPS suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/--deficient mice lacked WD-induced systemic inflammation or myeloid progenitor proliferation and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby arbitrate the potentially deleterious effects of trained immunity in inflammatory diseases. Overall design: Examination of GMPs in six different conditions by RNA-seq

Publication Title

Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP194595
Single-cell RNA-Seq Investigation of Foveal and Peripheral Expression in the Human Retina
  • organism-icon Homo sapiens
  • sample-icon 95 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: Single-cell RNA sequencing has revolutionized cell-type specific gene expression analysis. The goals of this study are to compare cell specific gene expression patterns between retinal cell types originating from the fovea and the periphery of human eyes. Methods: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Results: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Conclusions: Our study generates a large atlas of human retinal transcriptomes at the single cell level. We identified the majority of expected neural and supportive cell types, and describe regional differences in gene expression between the fovea and the periphery. Our results show that that single-cell RNA sequencing can be performed on human retina after cryopreservation, and that cone photoreceptors and Muller cells demonstrate region-specific patterns of gene expression. Overall design: mRNA profiles for thousands of cells from foveal and peripheral retinal isolates were generated from three human donor eyes using 10X Genomics Chromium single-cell system followed by sequencing on an Illumina HiSeq 4000.

Publication Title

Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE7553
Gene Expression Patterns Involved in the Malignant Transformation and Progression of Metastatic Melanoma
  • organism-icon Homo sapiens
  • sample-icon 86 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Metastatic melanoma is a deadly disease while non-metastatic melanoma and other cutaneous tumor types are usually cured with surgical removal of the primary tumors. This study evaluated gene expresion to determine if gene expression differences existed which would allow one to identify the metastatic tumors based on the expression of specific genes.

Publication Title

The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact