refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 169 results
Sort by

Filters

Technology

Platform

accession-icon SRP188078
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models
  • organism-icon Drosophila melanogaster
  • sample-icon 66 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development. Overall design: mRNA-sequencing of Drosophila neuron-specific RNAi knockdown (whole head) for four individual 3q29 homologs (DLG1, NCBP2, FBXO45, and PAK2), two pairwise knockdowns of 3q29 homologs (NCBP2/DLG1 and NCBP2/FBXO45), and two VDRC wild-type controls (GD and KK backgrounds). Sequencing was performed using Illumina HiSeq 2000 on three biological replicates per sample, with two-three technical replicates per biological replicate.

Publication Title

NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE51707
Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Objective: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods: Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results: Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38 signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38 in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38-controlled transcripts comprising female- and male-specific gene modules, with greater p38 dependence of pro-inflammatory gene expression in females. Interpretation: Our findings demonstrate a key role for p38 in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS

Publication Title

Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE60918
Genome wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE60915
Genome wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I [gene expression]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the effect of TFII-I depletion on gene expression Wehi-231 cell lines.

Publication Title

Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE7459
IL-6 induced changes in gene expression in activated mouse CD4+ T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

IL-6, a proinflammtory cytokine produced by antigen presenting cells and non-hematopoietic cells in response to external stimuli, acts as an important bridge between the innate and adaptive immune responses. IL-6 together with IL-4 can promote Th2 polarization, while in combination with TGFbeta mediates Th17 differentiation. We examined early changes in gene expression in mouse CD4+ T cells induced by IL-6.

Publication Title

The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP117267
A map of gene expression in neutrophil-like cell lines
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report gene expression data for the human cell lines HL-60 and PLB-985, which serve as models for human neutrophils. We measured gene expression using RNA-Seq for these cell lines both prior and after differentiation into a neutrophil-like state using two differentiation protocols (treatment with DMSO or treatment with DMSO and replacement of serum with Nutridoma). Overall design: HL-60 and PLB-985 cells grown in culture were processed for RNA-Seq both before and after differentiation for six days in media supplemented with 1.3% dimethyl sulfoxide (DMSO). The cell lines were also analyzed after differentiation for six days in media with 1.3% DMSO, reduced serum (0.5% FBS), and Nutridoma-CS (2%). PLB-985 cells were also analyzed at intermediate time points of 2 days and 4 days with the Nutridoma protocol.

Publication Title

A map of gene expression in neutrophil-like cell lines.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE76237
Total blood monocyte gene expression from neovascular age-related macular degeneration patients and age-matched controls
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mononuclear phagocytes (MPs), including monocytes and macrophages, play complex roles in the pathogenesis of age-related macular degeneration (AMD). We aimed to perform global transcriptome analysis on monocytes from AMD patients to obtain additional insight to the role of MPs in AMD. Peripheral blood was taken from treatment-nave neovascular AMD (nvAMD) patients (n=14), and age-matched controls (n=15). Peripheral blood mononuclear cells (PBMCs) were separated and monocytes were isolated via negative selection. Gene expression was evaluated with Affymetrix Gene1.0 ST microarrays. Statistical/bioinformatics analysis was performed using open sourceware programs.

Publication Title

Transcriptome Analysis on Monocytes from Patients with Neovascular Age-Related Macular Degeneration.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE58548
Paradoxical neurobehavioral rescue by cues associated with infant trauma: Amygdala 5-HT and CORT
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We show that infant trauma, as modeled by infant paired odor-shock conditioning, results in later life depressive-like behavior that can be modulated by learned infant cues (i.e., odor previously paired with shock). We have previously shown that this infant attachment odor learning paradigm results in the creation of a new artificial maternal odor that is able to control pup behavior and retain its value throughout development. Here, we assess the mechanism by which this artificial maternal odor is able to rescue depressive-like behavior and show that this anti-depressant like effect results in glucocorticoid and serotonin (5-HT) related changes in amygdala gene expression and is dependent on amygdala 5-HT. Furthermore, increasing amygdala 5-HT and blocking corticosterone (CORT) in the absence of odor mimics the adult rescue effects elicited by the artificial maternal odor, suggesting a mechanism by which odor presentation exerts its repair effects.

Publication Title

Enduring good memories of infant trauma: rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18945
Tonicity iduced changes in gene expression in IMCD cells and the effect of Cyclosporin A
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Cyclosporin A induces expression of proapoptotic factors when cells are challenged by increased tonicity

Publication Title

Cyclosporin-A induced toxicity in rat renal collecting duct cells: interference with enhanced hypertonicity induced apoptosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13672
Mouse mpkCCD cells, Rat Kidney Proximal Tubule, and Rat Kidney Medullary Thick Ascending Limb
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A series contains a set of transcript intensity values measured by Affymetrix microarray.

Publication Title

Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact