refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 71 results
Sort by

Filters

Technology

Platform

accession-icon GSE42902
FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Glucocorticoid excess is linked to central obesity, adipose tissue insulin resistance and type 2 diabetes mellitus. The aim of our study was to investigate the effects of dexamethasone on gene expression in human subcutaneous and omental adipose tissue, in order to identify potential novel mechanisms and biomarkers for glucocorticoid-induced insulin resistance in adipose tissue. Dexamethasone changed the expression of 527 genes in both subcutaneous and omental adipose tissue. FKBP5 and CNR1 were the most responsive genes in both depots (~7-fold increase). Dexamethasone increased FKBP5 gene and protein expression in a dose-dependent manner in both depots, but FKBP5 protein levels were 10-fold higher in omental than subcutaneous adipose tissue. FKBP5 gene expression in subcutaneous adipose tissue was positively correlated with serum insulin, HOMA-IR and subcutaneous adipocyte diameter, while fold change in gene expression by dexamethasone was negatively correlated with clinical markers of insulin resistance, i.e. HbA1c, BMI, HOMA-IR and serum insulin. Only one gene, SERTM1, clearly differed in response to dexamethasone between the two depots. Dexamethasone at high concentrations, influences gene expression in both subcutaneous and omental adipose tissue in a similar pattern and promotes gene expression of FKBP5, a gene that may be implicated in glucocorticoid-induced insulin resistance.

Publication Title

FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE69078
Comparison of the gene expression profiles of carfilzomib-resistant derivatives versus parental human myeloma cell lines
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

KMS-11 and KMS-34 cells were exposed to stepwise increasing concentrations of carfilzomib over a period of 18 weeks: cells adapted to growth in 4 nM carfilzomib by 4 weeks, in 6 nM in another 6 weeks and in 12 nM after a further 8 weeks. The resulting cell cultures, denoted KMS-11/Cfz and KMS-34/Cfz, respectively, retained resistance to carfilzomib even when tested after removal of selective pressure for approximately 8 weeks.

Publication Title

KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE78069
Comparative expression analysis of carfilzomib-resistant and parental LP-1 human multiple myeloma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

LP-1 cells were exposed to stepwise increasing concentrations of carfilzomib over a period of 18 weeks: cells adapted to growth in 4 nM carfilzomib by 4 weeks, in 6 nM in another 6 weeks and in 12 nM after a further 8 weeks. The resulting cell culture, denoted LP-1/Cfz, retained resistance to carfilzomib even when tested after removal of selective pressure for approximately 8 weeks.

Publication Title

Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP043159
RNA-seq studies reveal new insights into p63 and the transcriptomic landscape of the mouse skin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of gene-probe expression data (FPKM) for mouse skin using single-end read RNA-seq Overall design: RNA was collected and analyzed for 2 biological replicates each from 3 developmental stages (E18.5, P3, 10 weeks)

Publication Title

RNA-seq studies reveal new insights into p63 and the transcriptomic landscape of the mouse skin.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36947
Elevating Sox2 levels deleteriously affects the growth of glioblastoma and medulloblastoma cells.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Induction of the transcription factor Sox2 from a doxycycline-inducible promoter in iSox2-DAOY medulloblastoma cells.

Publication Title

Elevating SOX2 levels deleteriously affects the growth of medulloblastoma and glioblastoma cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33882
Musashi2 is required for the self-renewal and pluripotency of embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies have shown that the RNA binding protein Musashi 2 (Msi2) plays prominent roles during development and leukemia. Additionally, in embryonic stem cells (ESC) undergoing the early stages of differentiation, Msi2 has been shown to associate with Sox2, which is required for the self-renewal of ESC. These findings led us to examine the effects of Msi2 on the behavior of ESC. Using an shRNA sequence that targets Msi2 and a scrambled shRNA sequence, we determined that knockdown of Msi2 disrupts the self-renewal of ESC and promotes their differentiation. Collectively, our findings argue that Msi2 is required to support the self-renewal and pluripotency of ESC.

Publication Title

Musashi2 is required for the self-renewal and pluripotency of embryonic stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10538
Regulation of the early embryonic RPE (retinal pigment epithelium) transcriptome by the neural retina
  • organism-icon Gallus gallus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Purpose: The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier. Primary cultures of RPE can model the barrier, but are very sensitive to culture conditions. We examined how the neural retina regulates the RPE transcriptome in a culture model of embryonic development. Attention focused on the tight junctional genes essential for barrier function.

Publication Title

Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17921
Sex-related transcriptional differences in Day 7 bovine in vitro produced blastocysts
  • organism-icon Bos taurus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Sexual dimorphism in mammals is mostly attributable to sex-related hormonal differences in fetal and adult tissues; however, this may not be the sole determinant. Though genetically-identical for autosomal chromosomes, male and female preimplantation embryos could display sex-specific transcriptional regulation which can only be attributted to the differences in sexual chromosome dosage.

Publication Title

Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7176
Develomental Time Course of the Retinal Pigment Epithelial Transcriptome
  • organism-icon Gallus gallus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Purpose: The morphology of the RPE shows minimal change as the neural retina and choriocapillaris differentiate. Nonetheless, initial studies of barrier-related proteins suggest extensive remodeling of the RPE in response to this changing environment. A genomic approach was used to investigate the extent of this remodeling.

Publication Title

Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055569
Scalable Microfluidics for Single Cell RNA Printing and Sequencing
  • organism-icon Homo sapiens
  • sample-icon 643 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Single cell transcriptomics has emerged as a powerful approach to dissecting phenotypic heterogeneity in complex, unsynchronized cellular populations. However, many important biological questions demand quantitative analysis of large numbers of individual cells. Hence, new tools are urgently needed for efficient, inexpensive, and parallel manipulation of RNA from individual cells. We report a simple microfluidic platform for trapping single cell lysates in sealed, picoliter microwells capable of “printing” RNA on glass or capturing RNA on polymer beads. To demonstrate the utility of our system for single cell transcriptomics, we developed a highly scalable technology for genome-wide, single cell RNA-Seq. The current implementation of our device is pipette-operated, profiles hundreds of individual cells in parallel with library preparation costs of ~$0.10-$0.20/cell, and includes five lanes for simultaneous experiments. We anticipate that this system will ultimately serve as a general platform for large-scale single cell transcriptomics, compatible with both imaging and sequencing readouts.!Series_type = Expression profiling by high throughput sequencing Overall design: A microfluidic device that pairs sequence-barcoded mRNA capture beads with individual cells was used to barcode cDNA from individual cells which was then pre-amplified by in vitro transcription in a pool and converted into an Illumina RNA-Seq library. Libraries were generated from ~600 individual cells in parallel and extensive analysis was done on 396 cells from the U87 and MCF10a cell lines and from ~500 individual cells with extensive analysis on 247 cells from the U87 and WI-38 cell lines. Sequencing was done on the 3''-end of the transcript molecules. The first read contains cell-identifying barcodes that were present on the capture bead and the second read contains a unique molecular identifier (UMI) barcode, a lane-identifying barcode, and then the sequence of the transcript.

Publication Title

Scalable microfluidics for single-cell RNA printing and sequencing.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact