refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 474 results
Sort by

Filters

Technology

Platform

accession-icon GSE26231
Noggin vs BMP4 overexpression Epidermis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The study was performed to determine if there were alterations in the total RNA pool among the epidermal keratinocytes of K14 promotor-driven noggin overexpression compared with K14 promotor-driven BMP4 overexpression transgenic animals, which will directly relate to cellular chemistry and immune and sensory function. The total study is also aimed at determining alterations of transcrption factors and/or regulation of gene function, including methylation states and micro RNA control in keratinocytes following sensory challenge, particularly neuropathic and chronic pain conditions.

Publication Title

Keratinocyte expression of calcitonin gene-related peptide β: implications for neuropathic and inflammatory pain mechanisms.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58233
Genome-wide analysis in Human Colorectal Cells reveals Ischaemia-mediated expression of motility genes via DNA hypomethylation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE61062
Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

A great number of studies have investigated changes induced by morphine exposure in gene expression using several experimental models. In this study, we examined gene expression changes during chronic exposure to morphine during maturation and differentiation of zebrafish CNS.

Publication Title

Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine: identification of new genes associated with neuronal function and mu opioid receptor expression.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE58049
Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation (expression)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumors, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel results suggest that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.

Publication Title

Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE26051
Analysis of Human Tendinopathy Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chronic tendon injuries, also known as tendinopathy, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure and yet little is known about the molecular mechanism leading to tendinopathy. We have used histological evaluation and molecular profiling to determine the gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Diseased tendons have altered extracellular matrix, fiber disorientation, increased cellular content and vasculature and the absence of inflammatory cells. Global gene expression profiling identified 1783 transcripts with significant different expression patterns in the diseased tendons. Global pathway analysis further suggests altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. We have identified pathways and genes regulated in tendinopathy samples that will help contribute to the understanding of the disease towards the development of novel therapeutics.

Publication Title

Regulation of gene expression in human tendinopathy.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE92428
Expression data from mRNA in complex with EGFR from irradiated human A549 (ATCC CCL185) cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Immunoprecipitation of EGFR from irradiated A549 (ATCC CCL185) cells was performed in order to characterize bound mRNA species with the help of microarray analysis

Publication Title

New roles for nuclear EGFR in regulating the stability and translation of mRNAs associated with VEGF signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE15619
Epigenetic signature of breast cancer and its association with gene expression and copy number
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recent advances in multiple whole genome technologies provide unprecedented opportunities to profile epigenomic signatures in cancer cells. Previously we used a human gene promoter tiling microarray platform to identify genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. Interestingly, the clustered nature of epigenetic targets that we identified, along with our concurrent karyotype analyses, have now led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy) may be superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes.

Publication Title

Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP090905
p53 activity results in DNA replication fork processivity
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

p53 induces cell death upon DNA damage, but this may not confer all of its tumor suppressor activity. We report that p53 activation enhances the processivity of DNA replication, as monitored by multi-label fiber assays, whereas removal of p53 reduces fork progression. This was observed in tumor-derived U2OS cells, but also in murine embryonic fibroblasts with heterozygous or homozygous p53 deletion, and in freshly isolated thymocytes from mice with differential p53 status. Mdm2, a p53-inducible gene product, similarly supported DNA replication even in p53-deficient cells, suggesting that sustained Mdm2-expression is at least one of the mechanisms allowing p53 to prevent replicative stress. Thus, p53 helps to protect the genome during S phase, by preventing the occurrence of stalled or collapsed replication forks. These results expand p53’s tumor-suppressive functions, adding to the ex-post model (elimination of damaged cells) an ex-ante activity, i.e. the prevention of DNA damage during replication. Overall design: Expression profiling by high throughput sequencing

Publication Title

p53 Activity Results in DNA Replication Fork Processivity.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE17735
Analysis of altered gene expressions in valproate-treated Disc1-L100P mutant mice
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Microarray analysis revealed that changes in genes expressions are brain region-dependent; expression of several genes are affected by point mutation L100P, which was verified by RT-PCR (Lcn2, Cyr61, Slc6a12, Slc40a1, Egr2), a few genes are affected by genotype and valproate (Dusp1 and Purb), suggesting their role in valproate-induced benificial effect on sensorimotor gaiting in Disc1-L100P mutant mice. The final conclusion will be drawn after series of RT-PCR confirmation.

Publication Title

Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3.

Sample Metadata Fields

Sex, Specimen part, Compound

View Samples
accession-icon SRP044194
Transcriptome analysis of WT and ATRX KO Cast x 129 mouse ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of gene expression in WT and ATRX KO Cast x 129 Mouse ES cells Overall design: Paired end RNA-seq analysis of PolyA selected RNA and PolyA depeleted RNA from in both wildtype nd ATRX knocked out Castx129 Mouse ES Cells

Publication Title

ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact