refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 118 results
Sort by

Filters

Technology

Platform

accession-icon SRP067913
JAG1 Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Background: Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process is unknown Results: The objective of this study was to define the role of the Notch ligand JAG1 in regulating BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. Conclusions: These data demonstrate JAG1 mediated Notch signaling regulates differentiation of BC into secretory cells. This study demonstrates that expression of the Notch ligand JAG1 is highly enriched in basal stem/progenitor cells (BC) of the human airway epithelium and that modulation of its expression levels during differentiation of BC play an important role in regulating secretory cell differentiation with no effect on ciliated cell differentiation. These observations have implications for developing novel targets to specifically modulate levels of secretory cells in human airway disorders. Overall design: RNA sequencing of primary (Passage 0) and immortalized BC was performed on cells once they had reached 70-80% confluence. The 8 RNA-Seq samples in this submission were all normal, nonsmoker samples without any over-expression or knock-down. The 8 RNA-Seq samples show the BCiNS1.1 cell line samples to be similar to the primary basal cell (BC) samples.

Publication Title

JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE92662
Waterpipe Smoking Induces Epigenetic Changes in the Small Airway Epithelium
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Waterpipe smoking induces epigenetic changes in the small airway epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84101
Waterpipe Smoking Induces Epigenetic Changes in the Small Airway Epithelium [array]
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use water-pipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

Publication Title

Waterpipe smoking induces epigenetic changes in the small airway epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52237
Smoking accelerated aging of the small airway epithelium
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aging involves multiple biologically complex processes characterized by a decline in cellular homeostasis over time leading to a loss and impairment of physiological integrity and function. Specific cellular hallmarks of aging include abnormal gene expression patterns, shortened telomeres and associated biological dysfunction. Like all organs, the lung demonstrates both physiological and structural changes with age that result in a progressive decrease in lung function in healthy individuals. Cigarette smoking accelerates lung function decline over time, suggesting smoking accelerates aging of the lung. Based on this data, we hypothesized that cigarette smoking accelerates the aging of the small airway epithelium, the cells that take the initial brunt of inhaled toxins from the cigarette smoke and one of the primary sites of pathology associated with cigarette smoking. Using the sensitive molecular parameters of aging-related gene expression and telomere length, the aging process of the small airway epithelium was assessed in age matched healthy nonsmokers and healthy smokers with no physical manifestation of lung disease or abnormalities in lung function. Analysis of a 73 gene aging signature demonstrated that smoking significantly dysregulates 18 aging-related genes in the small airway epithelium. In an independent cohort of male subjects, smoking significantly reduced telomere length in the small airway epithelium of smokers by 14% compared to nonsmokers. These data provide biologic evidence that prior to the clinical manifestation of lung disease; smoking accelerates aging of the small airway epithelium.

Publication Title

Smoking accelerates aging of the small airway epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP133503
Chromatin Associated RNA-Seq of CD8+ T cells expressing different levels of Runx3 in a cell culture model of CTL differentiation [Chr Assoc]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

T cell receptor (TCR) stimulation of naïve CD8+ T cells initiates reprogramming of cis-regulatory landscapes that specify effector and memory cytotoxic T lymphocyte (CTL) differentiation. We mapped regions of hyper-accessible chromatin in naïve cells during TCR stimulation and discovered that the transcription factor (TF) Runx3 controls de novo access to memory CTL-specific cistromes prior to the first cell division, and is essential for memory CTL differentiation. Runx3 specifically promotes accessibility of cis-acting regions highly enriched with IRF, bZIP and Prdm1-like family TF motifs, upregulates IRF4 and establishes feed-forward transcriptional circuits that induce fundamental CTL attributes in memory precursor cells. Runx3 drives uncoupling from the naïve cell state, but subsequently restrains terminal differentiation of nascent CTL by preventing high expression of the TF T-bet and slowing effector cell proliferation. Enforced Runx3 expression enhances memory CTL differentiation and increases their numbers during iterative infections. Thus, Runx3 functions in a pioneering role to initialize and then ensure memory CTL differentiate. Overall design: 6 samples, 2 replicates each, 2 wildtype controls

Publication Title

The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP073118
Role of transcriptional coregulator GRIP1 in control of macrophage polarization and metabolic homeostasis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Diet-induced obesity is characterized by macrophage (MF) infiltration and low-grade chronic inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT MF are highly heterogeneous in their origin, patterns of gene expression and activities: unlike infiltrating monocyte-derived MF that promote inflammation and metabolic dysfunction, tissue-resident WAT MF originally described as ‘M2’ are phenotypically anti-inflammatory and counteract obesity and insulin resistance. Despite the critical role of the balance between these MF populations in metabolic homeostasis, the molecular mechanisms and key players that establish the resident MF transcription program are poorly understood. We recently reported that glucocorticoid receptor (GR)-interacting protein (GRIP)1 - a nuclear receptor coactivator - cooperates with GR to repress transcription of inflammatory genes. Here, using mice conditionally lacking GRIP1 in MF (cKO), we show that GRIP1 promotes MF polarization in response to IL4 (M2(IL4)) via a nuclear receptor-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4 – a critical driver of tissue MF differentiation. Interestingly, in vivo, GRIP1 cKO mice challenged with high-fat diet develop massive MF infiltration and chronic inflammation in WAT and liver, fatty livers, hyperglycemia, hyperinsulinemia and glucose intolerance consistent with metabolic syndrome phenotype. Together, our findings identify GRIP1 as a critical regulator of immunometabolism, which relies on distinct transcriptional mechanisms to coordinate the balance between MF populations in vivo thereby protecting mice from obesity-induced metabolic disease. Overall design: 1. Examination of IL4 induced transcriptome in in vitro differentiated primary bone marrow-derived macrophages. 2. Examination of macrophage transcriptome in macrophages isolated from the white adipose tissue of the WT and GRIP1(cKO) conditional KO animals

Publication Title

The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP007569
SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity. Overall design: Human monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) were isolated from 12 healthy volunteers based on MACS technology. Total RNA from monocyte subsets was isolated and same aliquots from each donor and monocyte subset were matched for SuperSAGE. Three SuperSAGE libraries (CD14++CD16-, CD14++CD16+ and CD14+CD16++) were generated.

Publication Title

SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71879
Comparing gene expression profiles of pigmented and amelanotic (MPNST-like) melanomas arising in the genetically engineered BRAF(V600E)-Cdk4(R24C) mouse melanoma model
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We found that pigmented and amelanotic (MPNST-like) melanomas arise in the genetically engineered BRAF(V600E)-Cdk4(R24C) mouse melanoma model and even in the same animal.

Publication Title

A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48432
Amplification of RANK- and c-Met-mediated signaling promotes metastatic colonization
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We found that RANKL, expressed by cancer cells or derived from exogenous sources, consistently induced human prostate, breast, kidney, lung and liver cancer cells to colonize or metastasize to bone in an animal model of cancer bone metastasis. RANK-mediated signaling established a premetastatic niche through a forward feedback loop by inducing RANKL and c-Met expression and downstream signaling via upregulation of master regulator transcription factors regulating EMT (Twist1, Slug, Zeb1, Zeb2), stem cells (Sox2, Myc, Oct3/4 and Nanog), neuroendocrine cells (Sox 9, HIF-1 and FoxA2) and osteomimicry (c-Myc/Max, Sox2, Sox9, HIF1 and Runx2). Abrogating RANK or its downstream signaling network, c-Myc/Max or c-Met, abolished PCa skeletal metastasis in mice. We observed that a small number of RANKL-expressing PCa cells can initiate bone and soft tissue metastases by recruiting non-tumorigenic or bystander PCa or host cells from the circulation or at metastatic sites to co-colonize bone. The recruited bystander PCa cells assume the phenotypes of RANKL-expressing PCa cells by expressing increased c-Met, phosphorylated c-Met and RANKL. RANKL expression at a single cell level in primary PCa tissues predicted disease-specific survival, reflecting the significant role of RANKL-RANK signaling in the development of lethal bone metastasis.

Publication Title

RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE83811
Expression Data from ALDH1+ breast cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells, are thought to be responsible for metastasis and chemoresistance.. In this study, based on whole transcriptome analysis from putative breast CSCs and reverse-engineering of transcription control networks, we were able to identify two networks associated to this phenotype.

Publication Title

Transcription Factor Networks derived from Breast Cancer Stem Cells control the immune response in the Basal subtype.

Sample Metadata Fields

Age, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact