refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 61 results
Sort by

Filters

Technology

Platform

accession-icon SRP063059
Transcriptome-wide Quantitative Analysis of XLPDR-derived human dermal fibroblasts with POLA1 deficiency
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The goal of this study is to analyzed transcriptome changes caused by POLA1 deficiency. Our data represents the first detailed analysis of molecular basis of XLPDR syndrome. We report than POLA1 deficiency leads to over-activation of IRF and NF-kB pathways with overexpression of typical markers of autoimmune syndromes. Overall design: Wild type and XLPDR-derived dermal fibroblasts are analyzed under non-stimulated (basal) conditions, after TNF treatment (2 and 12 h, 1000 U/mL), and poly(dA:dT) stimulation (16h, 1 mkg/mL). Obtained data were confirmed using the cellular model of XLPDR - normal dermal fibroblasts pretreated with control or anti-POLA1 siRNA and stimulated in analogous way.

Publication Title

NK cell defects in X-linked pigmentary reticulate disorder.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP053026
Drosophila melanogaster Transcriptome or Gene expression
  • organism-icon Drosophila melanogaster
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The DIMM basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, CREB-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of the regulated secretory pathway at steps that are both proximal and distal.

Publication Title

Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE110186
NOD2- and disease-specific gene expression profiles of peripheral blood mononuclear cells from Crohns disease patients
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Employing microarray assays, a total of 267 genes were identified that were significantly up- or downregulated in PBMCs of WT-NOD2 patients, compared to healthy donors after challenge with vitamin D (+/-D) and/or a combination (+/-LP) of LPS (lipopolysaccharide) and PGN (peptidoglycan) (p < 0.05; threshold: 2-fold change). For further analysis by real-time PCR, 12 genes with known impact on inflammation and immunity were selected that fulfilled predefined expression criteria. In a larger cohort of patients and controls, a disease-associated expression pattern, with higher transcript levels in vitamin D-treated PBMCs from 5 patients, was observed for three of these genes, CLEC5A (p < 0.030), lysozyme (LYZ; p < 0.047) and TREM1 (p < 0.023). Six genes were found to be expressed in a NOD2- dependent manner (CD101, p < 0.002; CLEC5A, p < 0.020; CXCL5, p < 0.009; IL-24, p < 0.044; ITGB2, p < 0.041; LYZ, p < 0.042). Interestingly, the highest transcript levels were observed in patients with heterozygous NOD2 mutations.

Publication Title

&lt;i&gt;NOD2&lt;/i&gt;- and disease-specific gene expression profiles of peripheral blood mononuclear cells from Crohn's disease patients.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE14277
Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to adenocarcinomas
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lung cancer is a leading cause of deaths in the world. There is a need to improve an understanding of mechanisms of malignant transformation and to develop genetic markers of disease for better and targeted therapies.

Publication Title

Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP090515
Epigenetic stress responses induce muscle stem cell aging by Hoxa9 developmental signals [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background and Aims: Analysis of aging-induced impairments in satellite cells (SCs) – the stem cells of skeletal muscle that are required for its regeneration. Hox genes are known to control stem cell function and development of various tissues. Overall design: Hindlimb muscles from young adult (3-4 months) and old (22-28 months) C57BL/6J mice were injured by BaCl2 injection in order to induce satellite cell activation. Satellite cells were isolated 3 days after injury and gene expression was analyzed.

Publication Title

Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE19310
Expression data from wild type C. elegans and 5 osmotic stress resistant mutants exposed to hyper/isotonic environments
  • organism-icon Caenorhabditis elegans
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Adaptation of C. elegans to hypertonic environments involves the accumulation of the organic osmolyte glycerol via transcriptional upregulation of the glycerol biosynthestic enzyme gpdh-1. A number of mutants, termed osmotic stress resistant (osr) mutants, have been identified. osr mutants cause constitutive upregulation of gpdh-1 and confer extreme resistance to hypertonicity. We tested the hypothesis that osr mutants broadly activate a gene expression program normally activated by osmotic stress in wild type animals using Affymterix microarray analysis of the hypertonic stress response in wild type animals and of constituitive gene expression changes in five osr mutants.

Publication Title

Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12889
CTCF demarcates chromatin domains
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Insulators are DNA elements, which prevent inappropriate interactions between the neighboring regions of the genome. They can be functionally classified as either enhancer blockers or domain barriers. CTCF (CCCTC binding factor) is the only known major insulator binding protein in the vertebrates and has been shown to bind many enhancer-blocking elements. However, it is not clear whether it plays a role in chromatin domain barriers between active and repressive domains. Here, we used ChIP-Seq to map the genome-wide binding sites of CTCF in three cell types and identified significant binding of CTCF to the boundaries of repressive chromatin domains marked by H3K27me3. Although we find an extensive overlapping of CTCF binding sites across the three cell types, its association with the domain boundaries is cell type-specific. We further show that the nucleosomes flanking CTCF binding sites are well positioned and associated with histone H2AK5 acetylation (H2AK5ac). Interestingly, we found a complementary pattern between the repressive H3K27me3 and the active H2AK5ac regions, which are separated by CTCF. Our findings indicate that CTCF may play important roles in the barrier activity of insulators and provide a resource for further investigation of the CTCF function in organizing chromatin in the human genome.

Publication Title

Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22180
In vitro carcinogenicity testing with Balb/c 3T3 Cells treated with various chemical carcinogens
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.

Publication Title

Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE18500
Mast cells in response to some pathogens elicit a transcriptional program devoid of type I IFN response
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Although mast cells elicit proinflammatory and type I IFN responses upon VSV infection, in response to L.monocytogenes (L.m) or S. Typhimurium (S.t), such cells elicit a transcriptional program devoid of type I IFN response.

Publication Title

Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12646
Chromatin Signatures in Multipotent Human HSCs Indicate the Fate of Bivalent Genes during Differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Histone modifications have been implicated in stem cell maintenance and differentiation. We have analyzed genome-wide changes in gene expression and histone modifications during differentiation of multipotent human primary hematopoietic stem cells/progenitor cells (HSCs/HPCs) into erythrocyte precursors. Our data indicate that H3K4me1, H3K9me1, and H3K27me1 associate with enhancers of differentiation genes prior to their activation and correlate with basal expression, suggesting that these monomethylations are involved in the maintenance of activation potential required for differentiation. In addition, although the majority of genes associated with both H3K4me3 and H3K27me3 in HSCs/HPCs become silent and lose H3K4me3 after differentiation, those that lose H3K27me3 and become activated after differentiation are associated with increased levels of H2A.Z, H3K4me1, H3K9me1, H4K20me1, and RNA polymerase II in HSCs/HPCs. Thus, our data suggest that gene expression changes during differentiation are programmed by chromatin modifications present at the HSC/HPC stage and provide a resource for enhancer and promoter identification.

Publication Title

Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact