refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11 results
Sort by

Filters

Technology

Platform

accession-icon GSE65065
Expression data of BRPF3 depletion from the human osteosarcoma U2OS cell line
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The Bromo-domain and PHD-finger protein, BRPF3, forms a complex with HBO1 and regulates the initiation of DNA replication. BRPF3-dependent histone H3K14 enriched in chromatin surrounding a fraction of replication origins may play an important role in origin firing.

Publication Title

BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP062144
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets (RNA-seq AML development)
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 AML

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062170
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets (RNA-seq B-ALL)
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 B-ALL

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061972
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets [RNA-Seq_AML]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of several AML cell lines

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061973
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets [RNA-Seq_normal]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of normal cells (CD34+) from different donors

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062417
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets (Leukemia Cell Bank)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of MLL-AF9 AML pediatric patients

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31244
Notch1 mediates cell fate decisions in the mouse uterus and is critical for complete decidualization
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and trans-differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by gamma-secretase inhibition resulted in significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1d/d) confirmed a Notch1-dependant hypomorphic decidual phenotype.

Publication Title

Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE24768
Influence of Set7/9 on hESC differentiation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We analyzed the role of the histone lysine methyltransferase Set7/9 in the differentiation of human embryonic stem (ES) cells. Human ES cell lines expressing a control short hairpin and a short hairpin against Set7/9 were established and the genome wide expression profile was compared between both cell lines at different days during differentiation. Analysis of both profiles indicates that in the absence of Set7/9 there is a delay in the silencing of self-renewal factors as well as in the induction of differentiation markers. These results indicate that Set7/9 plays an active role in the differentiation of human ES cells.

Publication Title

SETD7 Regulates the Differentiation of Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE31634
Laboratory evolution of Jen1p-independent lactate transport in Saccharomyces cerevisiae: identification of ADY2 alleles by whole genome resequencing and mRNA expression analysis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Background: Evolutionary engineering is a powerful approach to isolate suppressor mutants and industrially relevant genotypes. Until recently, DNA microarray analysis was the only affordable genome-wide approach to identify the responsible mutations. This situation has changed due to the rapidly decreasing costs of whole genome (re)sequencing. DNA microarray-based mRNA expression analysis and whole genome resequencing were combined in a study on lactate transport in Saccharomyces cerevisiae. Jen1p is the only S. cerevisiae lactate transporter reported in literature. To identify alternative lactate transporters, a jen1 strain was evolved for growth on lactate. Results: Two independent evolution experiments yielded Jen1p-independent growth on lactate (max 0.14 and 0.18 h-1 for single-cell lines IMW004 and IMW005, respectively). Whereas mRNA expression analysis did not provide leads, whole-genome resequencing showed different single nucleotide changes (C755G/Leu219Val and C655G/Ala252Gly) in the acetate transporter gene ADY2. Analysis of mRNA levels and depth of coverage of DNA sequencing combined with karyotyping, gene deletions and diagnostic PCR showed that in IMW004 an isochromosome III (~475 kb), which contains two additional copies of ADY2C755G, was formed via crossover between YCLW15 and YCRC6. Introduction of the ADY2 alleles in a jen1 ady2 strain resulted in growth on lactate (max 0.14 h-1 for Ady2pLeu219Val and 0.12 h-1 for Ady2pAla252Gly). Conclusions: Whole-genome resequencing of yeast strains obtained from independent evolution experiments enabled rapid identification of a key gene that was not identified by mRNA expression analysis of the same strains. Reverse metabolic engineering showed that mutated alleles of ADY2 (C655G and C755G) encode efficient lactate transporters.

Publication Title

Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61412
Expression data from advanced stage of murine pancreatic ductal adenocarcinoma (PDAC) and control pancreas
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to detail the global gene expression signature of PDAC and to identify distinct up- and down-regulated transcripts in these tumors compared to control pancreas. We also established from this dataset the metabolic signature of PDAC in order to define new metabolic therapeutic target for pancreatic cancer.

Publication Title

Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact