refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 876 results
Sort by

Filters

Technology

Platform

accession-icon SRP017330
DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Although liganded nuclear receptors have been established to regulate RNA polymerase II (Pol II)-dependent transcription units, their role in regulating Pol III-transcribed DNA repeats remains largely unknown. Here we report that ~2-3% of the ~100,000-200,000 total human DR2 Alu repeats located in proximity to activated Pol II transcription units are activated by the retinoic acid receptor (RAR) in human embryonic stem cells to generate Pol III-dependent RNAs. These transcripts are processed, initially in a DICER-dependent fashion, into small RNAs (~28-65 nt) referred to as repeat-induced RNAs that cause the degradation of a subset of crucial stem-cell mRNAs, including Nanog mRNA, which modulate exit from the proliferative stem-cell state. This regulation requires AGO3-dependent accumulation of processed DR2 Alu transcripts and the subsequent recruitment of AGO3-associated decapping complexes to the target mRNA. In this way, the RAR-dependent and Pol III-dependent DR2 Alu transcriptional events in stem cells functionally complement the Pol II-dependent neuronal transcriptional program. Overall design: RNA-sequencing of polyA selected RNA molecules in NTera2/D1 cells and Global Run On (GRO) assay followed by high throughput sequencing (GRO-seq).

Publication Title

DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP018538
Comparison of cardiomyocyte transcripts after knockdown of Gata4 in zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII, IlluminaHiSeq2000

Description

The Gata4 transcription factor is essential for normal heart development, but the molecular basis for its function remain poorly understood. We profiled at the whole genome level transcript changes in cardiomyocytes when Gata4 is depleted from zebrafish embryos. Our objective was to elucidate the cardiomyocyte-specific molecular program functioning downstream of Gata4 in order to better understand the role of Gata4 in cardiac morphogenesis. Overall design: Six samples in total are deposited. Three replicate control samples and three replicate Gata4 morphant samples were analyzed.

Publication Title

Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4774
ruben-affy-mouse-187820
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Dlx homeobox genes have central roles in controlling patterning and differentiation of the brain and craniofacial primordia. In the brain, loss of Dlx function results in defects in the production, migration and differentiation of GABAergic neurons, that can lead to epilepsy. In the branchial arches, loss of Dlx function leads to craniofacial malformations that include trigeminal axon pathfinding defects. To determine how these genes function, we wish to identify the transcriptional circuitry that lies downstream of these transcription factors by comparing gene expression in wild type with Dlx mutant CNS and craniofacial tissues.

Publication Title

Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP010350
Effects of Cardiac Glycosides on RNA Expression in Prostate Cancer LNCaP-abl Cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Illumina HiSeq 2000

Description

Prostate cancer is the most common cancer in men and cardiac glycosides inhibit prostate cancer cell proliferation. In order to investigate the mechanism by which cardiac glycosides inhibit prostate cancer cells, we observed genome-wide RNA expression in prostate cancer LNCaP-abl cells, hormone resistant cells, after the cardiac glycoside treatment using RNA-Seq. In addition, we profiled LNCaP-abl cells after androgen receptor (AR) knockdown to observe whether cardiac glycoside effect on RNA expression is similar to that of AR knockdown. Overall design: Observation of three cardioglycosides, Digoxin, Peruvoside and Strophanthidin, and AR knockdown regulated RNA expression in LNCaP-abl with RNA-Seq (each triplicates)

Publication Title

Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE39888
Expression data from ADORA1 knockout and ADORA1 APOE double-knockout mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study is to determine whether A1 adenosine receptor (ADORA1) plays a role in atherosclerosis development and its possible mechanisms. This dataset compares gene expression (aortas) of ADORA1 knockout mice to ADORA1+APOE double-knockout mice.

Publication Title

A₁ adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP056004
LRP8-Reelin-regulated Neuronal (LRN) Enhancer signature underlying learning and memory formation (RNA-Seq 1)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

A comprehensive landscape of epigenomic events regulated by the Reelin signaling through activation of specific cohort of cis-regulatory enhancer elements (LRN-enhancers), which involves the proteolytical processing of the LRP8 receptor by the gamma-secretase activity and is required for learning and memory behavior Overall design: All RNA-Seq experiments were designed to evaluate the transcriptional program regulated by the Reelin-LRP8 signaling pathway in neuronal cells

Publication Title

LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29458
Expression data from PDGF driven mouse tumors
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background

Publication Title

Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP014021
Control of Pro-Inflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of co-regulator complexes that function to read, write and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for an unexpected role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that restricts expression of toll like receptor 4 (TLR4) target genes in macrophages. H4K20me3 is deposited at the promoters of a subset of these genes by the SMYD5 histone methyltransferase through its association with NCoR co-repressor complexes. Signal-dependent erasure of H4K20me3 is required for effective gene activation and is achieved by NF-KB-dependent delivery of the histone demethylase PHF2. Liver X receptors antagonize TLR4-dependent gene activation by maintaining NCoR/SMYD5-mediated repression. These findings reveal a histone H4K20 tri-methylation/de-methylation strategy that integrates positive and negative signaling inputs that control immunity and homeostasis. Overall design: mRNA profiling from thioglycollate-elicited mouse macrophages treated with siRNA for Control, Smyd5 and Phf2 for 48 hours followed by 4 hours of LPS treatment.

Publication Title

Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP092058
RNA-sequencing profiles of e12.5 transcriptomes in WT and Itgb1-/- mouse pituitaries.
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal of the study was to understand how integrin beta1 expressed in epithelial cells directs developmental angiogenesis. Integrin beta1 was deleted specifically in the pituitary glands of embryonic mice. RNA was isolated from knockout and WT control pituitaries dissected at e12.5, one day prior to the initiation of developmental angiogenesis. Overall design: RNA from the e12.5 pituitaries of 3 WT and 2 KO littermate embryos was profiled.

Publication Title

Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP010430
A protective strategy against hyperinflammatory responses requiring the non-transcriptional actions of GPS2
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The association between hyper-inflammatory states and numerous diseases is widely recognized, but our understanding of the molecular strategies that have evolved to prevent uncontrolled activation of inflammatory responses remains incomplete. Here, we report a critical, non-transcriptional role of GPS2 as a guardian against hyperstimulation of TNFA-induced gene program. GPS2 cytoplasmic actions are required to specifically modulate RIP1 ubiquitylation and JNK activation by inhibiting TRAF2/Ubc13 enzymatic activity. In vivo relevance of GPS2 anti-inflammatory role is confirmed by inhibition of TNFA target genes in macrophages and by improved insulin signaling in the adipose tissue of aP2-GPS2 transgenic mice. As the non-transcriptional role is complemented by GPS2 functioning as positive and negative cofactor for nuclear receptors, in vivo overexpression also results in elevated circulating level of resistin and development of hepatic steatosis. Together, these studies define GPS2 as a molecular guardian required for precise control of inflammatory responses involved in immunity and homeostasis. Overall design: RNA-sequencing of polyA selected RNA molecules in 293T cells and ChIP-seq of GPS2, TBL1, and NCOR.

Publication Title

A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact