refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 876 results
Sort by

Filters

Technology

Platform

accession-icon GSE74000
Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we conducted transcriptomics analyses of: (i) liver samples from patients suffering from acetaminophen-induced acute liver failure (n=3) and from healthy livers (n=2) and (ii) hepatic cell systems exposed to acetaminophen, including their respective vehicle controls. The investigated in vitro systems are: HepaRG cells, HepG2 cells and a novel human skinpostnatal stem cell-derived model i.e. human skin-precursors-derived hepatocyte-like cells (hSKP-HPC).

Publication Title

Gene expression data from acetaminophen-induced toxicity in human hepatic <i>in vitro</i> systems and clinical liver samples.

Sample Metadata Fields

Specimen part, Disease stage, Cell line

View Samples
accession-icon GSE18670
Pancreatic cancer circulating tumor cells express a cell motility gene signature that predicts survival after surgery
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most cancer deaths are caused by metastases, which are the end-results of circulating tumor cells (CTC) that detach from the cancer primary and succeed to survive in distant organs. The aim of the present study was to develop a gene signature of CTC and to assess its prognostic relevance after surgery for pancreatic ductaladenocarcinoma (PDAC).

Publication Title

Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery.

Sample Metadata Fields

Sex, Age, Disease stage

View Samples
accession-icon GSE9536
The -Catenin Pathway is Overexpressed in Focal Nodular Hyperplasia but not in Cirrhotic FNH-like Nodules
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Focal nodular hyperplasias (FNHs) are benign liver lesions considered to be a hyperplastic response to increased blood flow in otherwise normal liver. In contrast, FNH-like nodules occur in cirrhotic liver but share similar histopathological features. To better understand the pathophysiology of FNH, we performed a transcriptomic analysis. Methods: Affymetrix and cDNA microarrays were used to compare gene expression in eight FNHs with that in tissue from six normal livers. Selected genes were validated with quantitative RT-PCR in 70 benign liver tumors including adenomas and cirrhotic and FNH-like lesions. Results: Among the deregulated genes in FNHs, 19 were physiologically zonated in the normal liver lobule. All six periveinous genes were up-regulated in FNH, whereas 13 genes normally expressed in the periportal area were down-regulated. Immunohistochemistry revealed that glutamine synthetase was markedly overexpressed, forming anastomosed areas usually centered on visible veins. -catenin mRNA was slightly but significantly overexpressed, as were several known -catenin target genes. Moreover, activated hypophosphorylated -catenin protein accumulated in FNH in the absence of activating mutations. These results suggest zonated activation of the -catenin pathway specifically in FNH, whereas the other benign hepatocellular tumors, including FNH-like lesions, demonstrated an entirely different pattern of -catenin expression. Conclusions: In FNH, increased expression of the -catenin pathway was restricted to enlarged periveinous areas, which may explain the slight polyclonal over-proliferation of hepatocytes at the origin of the lesion. FNH-like nodules may have a different pathogenetic origin.

Publication Title

The beta-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE24031
Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57Bl/6 mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objective: Nonalcoholic fatty liver disease (NAFLD) is linked to obesity and diabetes, suggesting an important role of adipose tissue in the pathogenesis of NAFLD. Here we aim to investigate the interaction between adipose tissue and liver in NAFLD, and identify potential early plasma markers that predict NASH. Research Design and Methods: C57Bl/6 mice were chronically fed a high fat diet to induce NAFLD and compared with mice fed low fat diet. Extensive histological and phenotypical analyses coupled with a time-course study of plasma proteins using multiplex assay was performed. Results: Mice exhibited pronounced heterogeneity in liver histological scoring, leading to classification into 4 subgroups: LF-low (LFL) responders displaying normal liver morphology, LF-high (LFH) responders showing benign hepatic steatosis, HF-low (HFL) responders displaying pre-NASH with macrovesicular lipid droplets, and HF-high (HFH) responders exhibiting overt NASH characterized by ballooning of hepatocytes, presence of Mallory bodies, and activated inflammatory cells. Compared to HFL responders, HFH mice gained weight more rapidly and exhibited adipose tissue dysfunction characterized by decreased final fat mass, enhanced macrophage infiltration and inflammation, and adipose tissue remodelling. Plasma haptoglobin, IL-1, TIMP-1, adiponectin and leptin were significantly changed in HFH mice. Multivariate analysis indicated that in addition to leptin, plasma CRP, haptoglobin, eotaxin and MIP-1 early in the intervention were positively associated with liver triglycerides. Intermediate prognostic markers of liver triglycerides included IL-18, IL-1, MIP-1 and MIP-2, whereas insulin, TIMP-1, GCP-2 and MPO emerged as late markers. Conclusions: Our data support the existence of a tight relationship between adipose tissue dysfunction and NASH pathogenesis and point to several novel potential predictive biomarkers for NASH.

Publication Title

Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57BL/6 mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62165
Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 131 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

To evaluate the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC), we performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 control samples.

Publication Title

Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40041
Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Hepatic fibrosis is a wound-healing response to chronic liver injury, which may result in cirrhosis and liver failure. The c-Jun N-terminal kinase-1 (JNK1) gene has been shown to be involved in liver fibrosis. Here, we aimed to investigate the molecular mechanism and identify the cell-type involved in mediating the JNK1-dependent effect on liver fibrogenesis Wild-type (WT), JNK1/ and JNK1hepa (hepatocyte-specific deletion of JNK1) mice were subjected to bile duct ligation (BDL). Additionally, we performed bone marrow transplantations (BMT), isolated primary hepatic stellate cells (HSCs) and studied their activation in vitro. Serum markers of liver damage (liver transaminases, alkaline phosphatase and bilirubin) and liver histology revealed reduced injury in JNK1/ compared to WT and JNK1hepa mice. Hepatocyte cell death and proliferation was reduced in JNK1/ compared to WT and JNK1hepa. Parameters of liver fibrosis such as Sirius Red staining as well as Collagen IA1 and SMA expression were down-regulated in JNK1/ compared to WT and JNK1hepa livers, 4 weeks after BDL. To delineate the essential cell-type, we performed BMT of WT and JNK1-/- into JNK1-/- and WT mice, respectively. BMT experiments excluded bone marrow derived cells from having a major impact on the JNK1-dependent effect on fibrogenesis. Hence, we investigated primary HSCs from JNK1/ livers showing reduced transdifferentiation compared with WT and JNK1hepa-derived HSCs. We conclude that JNK1 in HSCs plays a crucial role in hepatic fibrogenesis and thus represents a promising target for cell-directed treatment options for liver fibrosis.

Publication Title

Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE42404
The side population of human pancreatic cancer expresses cancer stem cell-associated genes
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: To explore the side population (SP) in pancreatic ductal adenocarcinoma (PDAC) for its gene expression profile and its association to cancer stem cells (CSC) and to evaluate the value of genes from its gene signature on patient survival.

Publication Title

Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon SRP135678
Transcriptional analysis of in vivo responses to acetaminophen induced hepatic injury in the murine liver
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Liver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence underlies this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury model a transcriptional signature associated with the induction of paracrine senescence is observed within twenty four hours, and is followed by one of impaired proliferation. In genetic models of hepatocyte injury and senescence we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended upon macrophage derived TGFß1 ligand. In acetaminophen poisoning inhibition of TGFß receptor 1 (TGFßR1) improved survival. TGFßR1 inhibition reduced senescence and enhanced liver regeneration even when delivered after the current therapeutic window. This mechanism, in which injury induced senescence impairs regeneration, is an attractive therapeutic target for acute liver failure. Overall design: RNA-seq analysis was performed on a total of 24 samples extracted from murine liver, post hepatic injury induced by acetaminophen administration. Transcriptional profiles were from replicate samples generated at defined timepoints - 12, 24, 36, 48 and 72 hours post injury. Replicate samples were generated from 4 individual animals sacrificed at each timepoint, and compared to a control cohort of 4 animals not subjected to acetaminophen treatment.

Publication Title

TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon GSE9812
Molecular heterogeneity of developing retinal ganglion and amacrine cells
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born, they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. These experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type.

Publication Title

Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33089
Retina cells
  • organism-icon Mus musculus
  • sample-icon 82 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Exon 1.0 ST Array [transcript (gene) version (moex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional code and disease map for adult retinal cell types.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact