refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon SRP058587
The effect of knockdown Abl kinases on breast cancer cells'' global transcriptome
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To gain insight into the signaling pathway(s) required for ABL1/ABL2-dependent bone metastasis, we evaluated the consequences of single or double inactivation of ABL1 and ABL2 on the transcriptome of breast cancer cells. Double ABL1/ABL2 knockdown was required to decrease the levels of p-CrKL by more than 90%, indicative of inactivation of the endogenous ABL kinases. To examine the consequences of depleting the ABL kinases on the transcriptome of metastatic breast cancer cells we employed next generation sequencing (RNAseq) analysis. We found that 180 genes were significantly down-regulated and 40 genes were significantly up-regulated in ABL1/ABL2 knockdown cells. Overall design: Four samples were analyzed control, Abl single knockdown, Arg single knockdown, Abl/Arg double knockdown. Experiments were performed in triplicate.

Publication Title

ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069101
The effect of Abl kinases on non-small cell carcinoma global transcriptome
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To gain insight into the signaling pathway(s) required for ABL1/ABL2-dependent non-small cell carcinoma cells metastasis Overall design: Samples were analyzed by pair of either control versus ABL Kinase inhibitor GNF5, Or using scrambled shRNA versus ABL1/ABL2-specific shRNAs.

Publication Title

Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP131248
RNA-Guided Transcriptional Silencing In Vivo with S. aureus CRISPR-Cas9 Repressors
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

CRISPR-Cas9 transcriptional repressors have emerged as robust tools for disrupting gene regulation in vitro but have not yet been adapted for delivery in adult animal models. Here we created an S. aureus Cas9-based transcriptional repressor (dSaCas9KRAB) compatible with adeno-associated viral (AAV) delivery. To evaluate dSaCas9KRAB efficacy for targeting an endogenous gene in vivo, we silenced transcription of Pcsk9, a regulator of cholesterol levels, in the liver of adult mice. Systemic administration of a dual-vector AAV8 system expressing dSaCas9KRAB and a Pcsk9-targeting guide RNA (gRNA) resulted in significant reductions of serum PCSK9 and cholesterol levels. Despite a moderate host response to dSaCas9KRAB expression, PCSK9 repression was maintained for 24 weeks after a single treatment, demonstrating the potential for long-term gene silencing in post-mitotic tissues with dSaCas9KRAB. In vivo programmable gene silencing enables studies that link gene regulation to complex phenotypes and expands the CRISPR-Cas9 genetic perturbation toolbox for basic research and gene therapy applications. Overall design: C57Bl/6 wild-type mice were treated with AAVs expressing dSaCas9-KRAB and/or a Pcsk9-targeting gRNA by tail-vein injection. Six weeks after treatment, we harvested the livers of treated mice and performed mRNA-sequencing.

Publication Title

RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE36810
Expression data from mouse lungs exposed in-utero and/or as an adult to second-hand smoke (SHS)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Second-hand smoke (SHS) exposure during pregnancy has adverse effects on offspring. We used microarrays to characterize the gene expression changes caused by in-utero exposure and adult exposure to SHS in adult mouse lungs.

Publication Title

In utero exposure to second-hand smoke aggravates adult responses to irritants: adult second-hand smoke.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE38409
Expression data from mouse lungs, exposed in-utero to second-hand smoke (SHS) and challenged with ovalbumin (OVA) as adults.
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

SHS exposure during pregnancy has adverse effects on offspring.

Publication Title

In utero exposure to second-hand smoke aggravates the response to ovalbumin in adult mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE54774
Expression data from mice on a high fat, high carbohydrate diet treated with exenatide
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present study was constructed to confirm previous findings that mice on a high fat diet (HFD) treated by subcutaneous injection with exenatide (EXE) at 3g/kg once daily for 6 weeks develop exocrine pancreatic injury (Rouse et al. 2014). The present study included 12 weeks of EXE exposure at multiple concentrations (3, 10, or 30 g/kg) with multiple endpoints (histopathology evaluations, immunoassay for cytokines, immunostaining of the pancreas, serum chemistries and measurement of trypsin, amylase, and, lipase, and gene expression profiles). Time- and dose-dependent exocrine pancreatic injury was observed in mice associated with EXE exposure in a HFD environment. The time- and dose-dependent morphological changes identified in the pancreas involved acinar cell injury and death (autophagy, apoptosis, necrosis, and atrophy), cell adaptations (hypertrophy and hyperplasia), and cell survival (regeneration) accompanied with varying degrees of inflammatory response leading to secondary injury in pancreatic blood vessels, ducts, and adipose tissues. Gene expression profiles supported the presence of increased signaling for cell survival and altered lipid metabolism. The potential for EXE to cause acute or early chronic pancreatic injury was identified in a HFD environment. In human disease, the influence of pancreatitis risk factors or pre-existing chronic pancreatitis on this injury potential requires further investigation.

Publication Title

Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE32095
GPR120 mediates high-fat diet induced obesity
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of GPR120 which play roles for the fatty acid sensor in adipose tissue. Results provide insight into the transcriptional effects caused by the loss of the GPR120 proteins and provide further insight into their functions.

Publication Title

Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE19684
Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The morphogen and mitogen, Sonic Hedgehog, activates a Gli1-dependent transcription program that drives proliferation of granule neuron progenitors (GNPs) within the external germinal layer of the postnatally developing cerebellum. Medulloblastomas with mutations activating the Sonic Hedgehog signaling pathway preferentially arise within the external germinal layer, and the tumor cells closely resemble GNPs. Atoh1/Math1, a basic helix-loop-helix transcription factor essential for GNP histogenesis, does not induce medulloblastomas when expressed in primary mouse GNPs that are explanted from the early postnatal cerebellum and transplanted back into the brains of nave mice. However, enforced expression of Atoh1 in primary GNPs enhances the oncogenicity of cells overexpressing Gli1 by almost three orders of magnitude. Unlike Gli1, Atoh1 cannot support GNP proliferation in the absence of Sonic Hedgehog signaling and does not govern expression of canonical cell cycle genes. Instead, Atoh1 maintains GNPs in a Sonic Hedgehog-responsive state by regulating genes that trigger neuronal differentiation, including many expressed in response to bone morphogenic protein-4. Therefore, by targeting multiple genes regulating the differentiation state of GNPs, Atoh1 collaborates with the pro-proliferative Gli1-dependent transcriptional program to influence medulloblastoma development.

Publication Title

Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE102037
Novel MYC-driven medulloblastoma models generated by CRISPR activation of endogenous Myc
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Myc-driven Group 3 medulloblastoma (MB) is the most aggressive tumor among the four subgroups classified by transcriptome, genomic landscape and clinical outcomes. So far in all available mouse Group 3 models, the constitutive ectopic Myc expression was under control of LTR element or other exogenous promoters within the vectors, which were randomly inserted into the genome with multiple copies. Here we are deploying nuclease deficient CRISPR/dCas9-based transactivator that is targeted to promoter DNA sequences by specific guide RNA to force the transcriptional activation of endogenous Myc in p53-/-;cdkn2c-/- neurospheres cells. A combination of three sgRNAs together with dCas9-VP64 induced the highest expression of endogenous Myc. When the targeted cells were transplanted to the cortex of recipients, tumors arose fully recapitulate the Group 3 MB in human. This novel mouse model should significantly strengthen our understanding and treatment of the Myc-driven Group 3 medulloblastoma.

Publication Title

Mouse medulloblastoma driven by CRISPR activation of cellular Myc.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17050
Gene expression profiling in Wistar male rat left ventricle with chronic and severe aortic valve regurgitation
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Aortic valve regurgitation (AR) imposes a severe volume overload to the left ventricle (LV) which results in dilation, eccentric hypertrophy and eventually loss of function. Little is known about the impact of AR on LV gene expression. We therefore conducted a gene expression profiling study in the LV of male Wistar rats with chronic (9 months) and severe AR.

Publication Title

Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact