refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 144 results
Sort by

Filters

Technology

Platform

accession-icon SRP045701
Active repression of Sox9 by Jag1 is required for silencing the default chondrogenic fate of the vascular smooth muscle wall [set 2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Acquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vSMC from the descending aorta of 14.5 embryos Wild type (WT), SMC Jag1-heterozygous (HTZ) and SMC Jag1-null (KO) was generated by deep sequencing, in duplicate.

Publication Title

Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045702
Active repression of Sox9 by Jag1 is required for silencing the default chondrogenic fate of the vascular smooth muscle wall [set 1]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Acquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vascular Smooth Muscle Cells, isolated from the descending aorta of Immorto mouse, treated or not with gamma-secretase inhibitor was generated by deep sequencing, in triplicate.

Publication Title

Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE111678
RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 253 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Many cases of acute myeloid leukemia (AML) are associated with mutational activation of RTKs such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK not previously implicated in AML, as essential gene in different AML subtypes, and observed that RET-dependent AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes.

Publication Title

RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE37605
Expression Data of Treg and Tconv Cells from FoxP3-GFP Chimeric and FoxP3-ires-GFP B6 and NOD Mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to quantify the impact of chimeric Foxp3-GFP protein on the Treg cell transcriptional program.

Publication Title

An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE60148
Role of milk fat globule membrane (MFGM) in modulating gene expression in humans
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The aim of this study was to investigate if milk fat globule membrane (MFGM) enclosing the dairy fat influence peripheral blood mononuclear cells (PBMC) gene expression. This study was a 8-week single-blind, randomized, controlled isocaloric trial with two parallel groups including overweight (mean BMI: 28) adult women (n=30). All subjects consumed 40 g dairy fat per day either as cream (MFGM diet) or as butter oil (control diet).

Publication Title

Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP020491
Changes in gene expression profiles of circulating B cells after influenza vaccination in healthy human subjects
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Daily sampling of peripheral blood from human subjects vaccinated for influenza was done immediately before vaccination and for 10 days after vaccination. In B cells, 90% of transcriptomic variation in subjects who received influenza vaccine within the previous three years was explained by a single temporal pattern unique to the individual. A common set of 742 genes was strongly correlated with the migration of differentiating plasma cell subtypes. Overall design: Five subjects, 11 time points per subject (pre-vaccination and daily for 10 days post-vaccination)

Publication Title

High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP020492
Changes in PBMC gene expression profiles after influenza vaccination in healthy human subjects
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Daily sampling of peripheral blood from human subjects vaccinated for influenza was done immediately before vaccination and for 10 days after vaccination. Temporal patterns of gene expression, determined by RNA-seq, in unfractionated PBMC suggested migration of myeloid/dendritic cell lineage cells one day after vaccination. Overall design: Five subjects, 11 time points per subject (pre-vaccination and daily for 10 days post-vaccination)

Publication Title

High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE39864
Treg specific Gata3 knock out array
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (Treg cells). To gain insights into the molecular mechanisms of Foxp3 mediated gene expression we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multi-protein complexes of 400-800 kDa or larger and identified 361 associated proteins ~30% of which are transcription-related. Foxp3 directly regulates expression of a large proportion of the genes encoding its co-factors. Reciprocally, some transcription factor partners of Foxp3 facilitate its expression. Functional analysis of Foxp3 cooperation with one such partner, Gata3, provided further evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of Treg cell biology.

Publication Title

Transcription factor Foxp3 and its protein partners form a complex regulatory network.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26971
Affymetrix data for training of Endopredict algorithm
  • organism-icon Homo sapiens
  • sample-icon 225 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

These data, combined with other cohorts (GSE6532, GSE12093, and qRT-PCR based cohorts), was used to construct the EP algorithm, which predicts the likelihood of developing of a distant recurrence of early stage breast cancer under endocrine treatment. In addition, EPclin, a combination of the EP score, the nodal status and the tumor size, was constructed.

Publication Title

A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36279
Expression data from murine liver tissue upon depletion of regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Regulatory T cells (Treg) play a pivotal role in modulating immune responses and were shown to decrease atherosclerosis in murine models. How this effect is brought about remains elusive.

Publication Title

Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact