refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 156 results
Sort by

Filters

Technology

Platform

accession-icon SRP143519
RNA sequencing of SRSF3 depleted pluripotent cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 550

Description

RNA seqeuncing was performed to identifiy changes in genes expression and alternative splicing following SRSF3 depletion in pluripotent stem cells. Overall design: Induced pluripotent stem cells (iPSCs) generated from reprogrammable conditional SRSF3 knockout (SRSF3-KO/OKSM) mouse embryonic fibroblasts (MEFs) were induced for 24h to deplete SRSF3 and RNA seqeuncing was performed.

Publication Title

SRSF3 promotes pluripotency through <i>Nanog</i> mRNA export and coordination of the pluripotency gene expression program.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE25639
A mouse model of deregulation of the malt1 oncogene recapitulates the pathogenesis of human malt lymphoma
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 113 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE25638
A mouse model of deregulation of the malt1 oncogene recapitulates the pathogenesis of human malt lymphoma [MALT dataset]
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Attempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NF-kappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.

Publication Title

Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE34015
Expression of MALT1 oncogene in mouse hematopoietic stem/progenitor cells recapitulates the pathogenesis of human MALT lymphoma
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Comparison of gene expression profiling analysis of bone marrow isolated CD34+ cells from patients with MALT lymphoma vs. healthy individuals revealed a large number of differentially expressed genes that included NF-kB target genes, genes involved in inflamatory signalling and immunoglobulin genes, suggesting an early lymphoid B-cell priming.

Publication Title

Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE25637
A mouse model of deregulation of the malt1 oncogene recapitulates the pathogenesis of human malt lymphoma [Spleen dataset]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Attempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NFkappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.

Publication Title

Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE63239
Genome-wide microarray analysis of human fibroblasts in response to indomethacin and nimesulide.
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Establishment of a transcriptomic profile of human cells treated with genistein with particular emphasis on signature of genes coding for enzymes involved in glycosaminoglycan synthesis stands for the present study. The hypothesis tested was that indomethacin and nimesulide influence expression of some genes among which are those coding for enzymes required for synthesis of different GAGs being pathologically accumulated in mucopolysaccharidoses. Results provide important information concerning the extent of action of indomethacin and nimesulide at the molecular level in terms of modulation of gene expression by these substances.

Publication Title

Nonsteroidal anti-inflammatory drugs modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34074
Genome-wide microarray analysis of normal human fibroblasts in response to genistein
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Establishment of a transcriptomic profile of human cells treated with genistein with particular emphasis on signature of genes coding for enzymes involved in glycosaminoglycan synthesis stands for the present study. The hypothesis tested was that genistein influences expression of some genes among which are those coding for enzymes required for synthesis of different GAGs being pathologically accumulated in mucopolysaccharidoses. Results provide important information concerning the extent of action of genistein at the molecular level in terms of modulation of gene expression by this substance.

Publication Title

The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43692
Genome-wide microarray analysis of normal human fibroblasts in response to kaemferol, daidzein, kaemferol/genistein, and daidzein/genistein
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Establishment of a transcriptomic profile of human cells treated with kaemferol, daidzein, kaemferol/genistein, or daidzein/genistein with particular emphasis on signature of genes coding for enzymes involved in glycosaminoglycan synthesis stands for the present study. The hypothesis tested was that kaemferol, daidzein, kaemferol/genistein, and daidzein/genistein influence expression of some genes, among which are those coding for enzymes required for the synthesis of different GAGs being pathologically accumulated in mucopolysaccharidoses. Results provide important information concerning the extent of action of kaemferol, daidzein, kaemferol/genistein, and daidzein/genistein at the molecular level in terms of modulation of gene expression.

Publication Title

Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE36674
Expression data for mouse hypothalamus
  • organism-icon Mus musculus
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Strain differences in gene expression in the hypothalamus of BXD recombinant inbred mice

Publication Title

Sex-specific modulation of gene expression networks in murine hypothalamus.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE62537
Expression data roots of Arabidopsis plants inoculated with Verticillium longisporum
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Identification of genes differentially expressed in roots of Arabidopsis Col-0 and ndr1-1 mutants 48 h post inoculation with the fungal pathogen Verticillium longisporum.

Publication Title

Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact