refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 101 results
Sort by

Filters

Technology

Platform

accession-icon GSE59219
Intrinsic self-DNA triggers inflammatory disease dependent on STING
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59217
Intrinsic self-DNA triggers inflammatory disease dependent on STING (I)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59218
Intrinsic self-DNA triggers inflammatory disease dependent on STING (II)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70840
Transcriptomic response of rice leaves to 30% CO2 concentration
  • organism-icon Oryza sativa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Analysis of rice leaves (V2 stage) in response to a short treatment with very high CO2 concentration in the dark, using standard atmosphere as control.

Publication Title

High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE57605
Inflammation-Driven Carcinogenesis is Mediated through STING
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inflammation-driven carcinogenesis is mediated through STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP180007
TMED9-gated CNIH4 and TGFa signaling promotes pro-metastatic states in human primary colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

How cells in primary tumors initially become pro-metastatic is not understood. A previous genome-wide RNAi screen uncovered colon cancer metastatic suppressor and WNT promoting functions of TMED3, a member of the p24 ER-to-Golgi protein secretion family. Repression of WNT signaling upon knock-down (kd) of TMED3 might thus be sufficient to drive metastases. However, searching for transcriptional influences on other family members here we find that TMED3 kd leads to enhanced TMED9, that TMED9 acts downstream of TMED3 and that TMED9 kd compromises metastasis. Importantly, TMED9 pro-metastatic function is linked to but distinct from the repression of TMED3-WNT-TCF signaling. Functional rescue of the migratory deficiency of TMED9 kd cells identifies TGFa as a mediator of TMED9 pro-metastatic activity. Moreover, TMED9 kd compromises the membrane localization, and thus function, of TGFa. Analyses in three colon cancer cell types highlight a TMED9-dependent gene set that includes CNIH4, a member of the CORNICHON family of TGFa exporters. Our data indicate that TGFA and CNIH4, which display predictive value for disease-free survival, promote colon cancer cell metastatic behavior and suggest that TMED9 pro-metastatic function involves the modulation of the secretion of TGFa ligand. Finally, TMED9/TMED3 antagonism impacts WNT-TCF and GLI signaling, where TMED9 primacy over TMED3 leads to the establishment of a positive feedback loop together with CNIH4, TGFa and GLI1 that enhances metastases. We suggest that primary colon cancer cells can transition between two states characterized by secretion-transcription regulatory loops gated by TMED3 and TMED9 that modulate their metastatic proclivities. Overall design: CC14 and CC36, two primary colon cancer cells, were treated with control or shTMED9 expressing lentivirus. In addition, CC14 cells were also treated with shTMED3 expressing lentivirus. All the experiments were run in triplicates totaling 15 Samples.

Publication Title

The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE57603
Inflammation-Driven Carcinogenesis is Mediated through STING [MEFs]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease

Publication Title

Inflammation-driven carcinogenesis is mediated through STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP136487
Evaluation of the post-stroke transcriptome of the mouse cortex using genome-wide RNA-seq
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

RNA-sequencing was conducted to profile the transcriptome of the post-ischemic mouse cortex at multiple reperfusion time-points. RNA was isolated from sham and middle cerebral artery occlusion (MCAO)-operated mice at different reperfusion time points (6 h, 12 h or 24 h; three independent biological replicates per group), converted into cDNA libraries, and used for Illumina deep sequencing on a NexSeq500 instrument. The sequencing reads that passed quality filters were analyzed at the transcript isoform level based on the Tuxedo software package. On average 40.6 million reads were obtained from each sample and genome mapping was on average 82.9% for all samples. We detected 20,748 genes and 56,586 isoforms in the sham group; 22,192 genes and 60,023 isoforms in the 6 h group; 21,771 genes and 59,539 isoforms in the 12 h group; and 21,576 genes and 59,020 isoforms in the 24 h group. Our study represents the first detailed analysis of post-stroke mouse cortex transcriptomes generated using RNA-sequencing technology. Overall design: Genome-wide transcriptomic profiles of healthy and post-ischemic mouse cortices at various reperfusion time-points (6 h, 12 h, or 24 h) were generated using Illumina sequencing.

Publication Title

Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject, Time

View Samples
accession-icon SRP132298
Targeting CREBBP/EP300 bromodomains in cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Changes in gene expression caused by CREBBP/EP300 bromodomain inhibitors in a CML cell line Overall design: K562 cells were treated with CBP30 and I-CBP112 and changes in gene expression were evaluated by RNA-seq

Publication Title

CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP068961
Targeting CREBBP/EP300 in cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Antiprolifereative effects of CREBBP/EP300 inhibitors were tested in human leukemia and lymphoma cell lines and the molecular mechanisms responsible for such effects were explored. Overall design: K562 cells were treated with CBP-30 (CREBBP/EP300 bromodomain inhibitor), C646 (CREBBP/EP300 HAT activity inhibitor) and JQ1 (BRD4 inhibitor) and changes in gene expression were evaluated by RNA-seq.

Publication Title

CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact