refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon GSE6013
Gene expression in asbestos exposed lung cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Asbestos has been shown to cause chromosomal damage and DNA aberrations. The fiber is associated with many different lung diseases such as asbestosis, malignant mesothelioma, and lung cancer, but the disease-related processes are still largely unknown. Our aim was to identify specific gene expression profiles by using Affymetrix arrays, in human cell lines A549, Beas-2B, and MeT5A exposed to asbestos in a time-dependent manner. The hybridization data was analyzed using an algorithm specifically designed for clustering short time series expression data, a canonical correlation analysis (CCA) for identifying correlations between the cell lines, and a Gene Ontology (GO) analysis method for the identification of enriched differentially expressed biological processes.

Publication Title

Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10799
Gene expression profile of lung tumors
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have investigated whether the early dissemination of tumor cells into bone marrow is associated with a specific molecular pattern in primary lung cancer

Publication Title

Genomic profiles associated with early micrometastasis in lung cancer: relevance of 4q deletion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68454
Systems analysis of uterine and tumor microenvironments
  • organism-icon Mus musculus
  • sample-icon 63 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE68433
Systems analysis of uterine microenvironment 4, 6, 8, 10, 11 or 12 days after fertilization
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study was that Tregs orchestrated the immune reponse triggered in presence of embryo

Publication Title

Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE68434
Systems analysis of B16 tumor microenvironment 4 or 14 days after tumor inoculation
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of B16 tumor microenvironment at gene expression level. The hypothesis tested in the present study was that Tregs orchastrated the immune reponse triggered in presence of tumors

Publication Title

Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE12890
Xylose metabolism in recombinant Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

In the present study transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at genome-wide level how signalling and carbon catabolite repression differed in cells grown on either glucose or xylose. The more detailed knowledge about is xylose sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is it rather recognised as a non-fermentable carbon source is important in achieving understanding for further engineering this yeast for more efficient anaerobic fermentation of xylose.

Publication Title

Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68432
Systems analysis of uterine microenvironment in Treg depleted pregnant mice at 12 days after fertilization
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study was that Tregs orchestrated the immune reponse triggered in presence of embryo.

Publication Title

Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE22832
Transcriptional response of Sacchromyces cerevisiae to change in oxygen provision
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behaviour of cells during these changes. Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 1.0% and 20.9% O2 in the inlet gas (D= 0.10 /h, pH5, 30C). After steady state was achieved, oxygen was replaced with nitrogen and cultures were followed until new steady state was achieved. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilisation of respiratory carbon sources was observed.

Publication Title

Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism.

Sample Metadata Fields

Time

View Samples
accession-icon GSE38822
Gene expression profiling of experimental granulation tissue in Mmp13-/- mice compared to wild type mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Proteinases play a pivotal role in wound healing by degrading molecular barriers, regulating cell-matrix interactions and availability of bioactive molecules. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is a wide spectrum proteinase. Its expression and function is linked to the growth and invasion of many epithelial cancers such as squamous cell carcinoma. Moreover, the physiologic expression of MMP-13 is associated e.g. to scarless healing of human fetal skin and adult gingival wounds. While MMP-13 is not found in the normally healing skin wounds in human adults, it is expressed in mouse skin during wound healing. Thus, mouse wound healing models can be utilized for studying the role of MMP-13 in the events of wound healing. As the processes such as the migration and proliferation of keratinocytes, angiogenesis, inflammation and activation of fibroblasts are components of wound repair as well as of cancer, many results received from wound healing studies are also adaptable to cancer research.

Publication Title

MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

Sample Metadata Fields

Time

View Samples
accession-icon GSE14043
Genome-wide impact of ART-27 loss on androgen-regulated transcription in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The androgen receptor (AR) directs diverse biological processes through interaction with coregulators such as androgen receptor trapped clone-27 (ART-27). The impact of ART-27 on genome-wide transcription was examined. The studies indicate that loss of ART-27 enhances expression of many androgen-regulated genes, suggesting that ART-27 inhibits gene expression. Surprisingly, classes of genes that are upregulated upon ART-27 depletion include regulators of DNA damage checkpoint and cell cycle progression, suggesting that ART-27 functions to keep expression levels of these genes low.

Publication Title

Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact