refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE68091
Effects of ONC201 on mantle cell lymphoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The small molecule ONC201 is toxic in vitro to multiple cell lines and primary tumor samples of mantle cell lymphoma (MCL) and acute myeloid leukemia, even ones with unfavorable genetic features (notably including TP53 inactivation) or acquired resistance to other agents. Because the mechanism of action in these malignant hematologic cells appeared to differ from that in solid tumors, we performed gene expression profiling (GEP) studies on MCL lines treated with ONC201 and other agents with known mechanisms of action. Treatment of JeKo-1 cells with 5 uM ONC201 showed consistent and progressive increases or decreases over time in two sets of genes: upregulated genes, which implicated an ER stress response and mTOR pathway inhibition, and downregulated genes, which implicated reduced proliferation. These implicated effects of ONC201 were validated by confirmatory experiments. Similar GEP changes were observed in ONC201-naive Z138 cells after 24 hr of ONC201 treatment, but were not seen in Z138 cells made ONC201-resistant by chronic exposure. Finally, the GEP effects of ONC201 in JeKo-1 cells were mimicked by the ER stress inducer tunicamycin, but not by the direct MTOR inhibition rapamycin, further confirming an ER stress response and suggesting that inhibition of the mTOR pathway was by an indirect mechanism.

Publication Title

ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE47575
Regulation of Gene Expression by Connective Tissue Growth Factor (CTGF) in Mesenchymal Stromal Cells (MSCs)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

mRNA from bone marrow-derived MSCs stably expressing CTGF-specific shRNA (or empty vector control) was analyzed for differential gene expression. Significant differences were found in cell proliferation-related genes, especially genes related to the M phase of the cell cycle, which were down-regulated in CTGF-knockdown-MSCs compared to control MSCs.

Publication Title

Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP033357
Analysis of transgene siRNAs and ARL-8-dependent siRNAs in Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We analyzed the C. elegans small RNA response to high copy transgene sequences expressed in the soma in a wild type and an eri-6/7 mutant background. We also analyzed small RNA defects in the arl-8(tm2472) mutant. Transgene siRNAs are 22 nt long, mostly antisense, and correspond to the promoter, coding regions, the 3''UTR and plamsid sequences present on the transgene. Transgene siRNAs are decreased in the eri-6/7 mutant. In the arl-8 mutant, 26G siRNAs in the ALG-3/4 dependent endogenous RNAi pathway are decreased. Overall design: Sequencing small RNAs from C. elegans transgenic strains and mutants.

Publication Title

Multiple small RNA pathways regulate the silencing of repeated and foreign genes in C. elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP008429
The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications.
  • organism-icon Caenorhabditis elegans
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

To characterize the role of the ERI-6/7 helicase in endogenous small RNA pathways in C. elegans, small RNA populations from null alleles of eri-6 and eri-7, and from mutants of known endogenous RNAi pathway factors, eri-1 and ergo-1, were determined by deep sequencing, and compared to wild type. Overall design: Small RNA analysis in wild type and eri-1, ergo-1, eri-6 and eri-7 mutant C. elegans strains.

Publication Title

The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP004901
mut-16 and other mutator-class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Argonaute-associated siRNAs and Piwi-associated piRNAs have overlapping roles in silencing mobile genetic elements in animals. In C. elegans, mutator-class (mut) genes mediate siRNA-guided repression of transposons as well as exogenous RNA-directed gene silencing (RNAi), but their roles in endogenous RNA silencing pathways are not well understood. To characterize the endogenous small RNAs dependent on mutator-class genes, small RNA populations from a null allele of mut-16, as well as a regulatory mut-16(mg461) allele that disables only somatic RNAi, were subjected to deep sequencing. Overall design: Small RNA analysis in wild type and mut-16 mutant C. elegans strains

Publication Title

mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP035603
MUT-14 and SMUT-1 DEAD box RNA helicases have overlapping roles in germline RNAi and endogenous siRNA formation in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This data series contains small RNA high-throughput sequencing data for each of the mutator class genes. Samples are from stage-matched adult C. elegans grown at 20°C. Overall design: Small RNAs were isolated from synchronized wild type and mutant C. elegans and subjected to Illumina HiSeq sequencing. The series contains fastq and tab-separated files for 19 libraries.

Publication Title

MUT-14 and SMUT-1 DEAD box RNA helicases have overlapping roles in germline RNAi and endogenous siRNA formation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP032276
High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina MiSeq, Illumina HiSeq 2000

Description

N6-methyladenosine (m6A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m6A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated 8/8 methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time-course, and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminates a conserved, dynamically regulated methylation program in yeast meiosis, and provides an important resource for studying the function of this epitranscriptomic modification. Overall design: Examination of m6A methylation under various conditions

Publication Title

High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis.

Sample Metadata Fields

Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact