refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon SRP043144
The ribonuclease activity of SAMHD1 is required for HIV-1 restriction
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

SAMHD1 restricts HIV-1 replication in dendritic and other myeloid cells. SAMHD1 has been shown to possess a dGTP-dependent dNTP triphosphatase (dNTPase) activity and is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool. Arguing against a role for SAMHD1 dNTPase in HIV-1 restriction, the phosphorylation of SAMHD1 regulates the restriction activity toward HIV-1 without affecting its ability to decrease cellular dNTP levels. Here, we show that SAMHD1 is a phospho-regulated RNase and that the RNase function is required for HIV-1 restriction. Mutation of the SAMHD1 D137 residue in the allosteric site (SAMHD1D137N) abolishes dNTPase activity but has no effect on RNase activity. This dNTPase-defective SAMHD1D137N mutant is able to restrict HIV-1 infection to nearly the same extent as wild-type SAMHD1. SAMHD1 associates with and degrades the HIV-1 genomic RNA during the early phases of infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, thus rendering the cells permissive for HIV-1 infection. Furthermore, the phosphorylation of SAMHD1 at position T592 abolishes the RNase activity toward HIV-1 RNA, and consequently the ability of SAMHD1 to restrict HIV-1 infection, uncovering the phosphorylation of SAMHD1 T592 as a negative regulatory mechanism of RNase activity. Together, our results demonstrate that SAMHD1 is an essential RNase that prevents HIV-1 infection by directly degrading HIV-1 genomic RNA in a phosphorylation-regulated manner. The unique property of SAMHD1 that cleaves HIV-1 genomic RNA with no sequence preferences could be exploited to develop a new class of intervention for error-prone retroviruses. Overall design: Ribosomal RNA-depleted total RNA profiles of mock, SAMHD1 wild type and mutants infected with HIV-1 were examined at the time of 0, 1, 3 h by Illumina Hiseq2500.

Publication Title

The ribonuclease activity of SAMHD1 is required for HIV-1 restriction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP090822
Next-Generation Sequencing Supports Quantitative Analysis of Wild Type and Runx2+/- Calvarial Transcriptomes With or Without Administration of MS-275
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Because insufficiency of the Runt-related transcription factor 2 (Runx2) limits skeletal growth, there is a great deal of effort to activate Runx2 for clinical use. In this study, we found that MS-275, the class I-specific HDAC inhibitor, activates Runx2 both transcriptionally and translationally. Therefore, we performed NGS analysis to gain accurate patterns of gene expression in mouse calvaria tissue through MS-275 administration. As a result, we could get insight that treatment of MS-275 increases genes related with osteoblast differentiation and cell proliferation, and decreases genes in field of causing apoptosis. Overall design: Mice calvarial mRNA profiles of embryonic day 17.5 wild type (WT) and Runx2+/- mice were generated by deep sequencing using Illumina NextSeq 500. Mice were administered MS-275 or vehicle. Three replicates per group.

Publication Title

An HDAC Inhibitor, Entinostat/MS-275, Partially Prevents Delayed Cranial Suture Closure in Heterozygous Runx2 Null Mice.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE55314
Cerebellar RNA in Grid2 deficient mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Downsream of GRID2 in the mouse cerebellum.

Publication Title

Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact