refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 144 results
Sort by

Filters

Technology

Platform

accession-icon SRP059777
Nuclear Transfer nTreg model reveals fate-determining TCRbeta and peripheral nTreg precursors
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To study the development and function of “natural-arising” T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3+ CD4+ Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) ß-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR ß-chain was able to provide stronger TCR signals. This TCR-ß–driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3- CD4+ T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells. Overall design: We performed RNA-Seq analysis to determine the transcriptional differences between monoclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.TCRab.FoxP3GFP.Rag-/- and compared it with polyclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.FoxP3GFP mice

Publication Title

Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE96047
Microglia-specific microarray analysis at early symptomatic age in a mouse model of amyotrophic lateral sclerosis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Microarray analysis of microglia in a mouse model of amyotrophic lateral sclerosis identified the dysregulation of Brca1.

Publication Title

Brca1 is expressed in human microglia and is dysregulated in human and animal model of ALS.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57506
Germ cell nuclear factor regulates gametogenesis in developing gonads
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Expression of germ cell nuclear factor (GCNF, Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads.

Publication Title

Germ cell nuclear factor regulates gametogenesis in developing gonads.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29375
Time-course effect of APRIL on gene expression in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

APRIL (TNFSF13) is a ligand of the TNF superfamily which binds to two receptors, BCMA and TACI. We have found that APRIL and its receptor BCMA are specifically enhanced in hepatocellular carcinoma, as compared to non-cancerous liver tissue. We further identified that HepG2 cells present the same ligand/receptor pattern as human hepatocellular carcinomas. We investigated the role of APRIL in HepG2 gene expression in a time course study.

Publication Title

APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE96807
Genome-wide profiling of genes during differentiation of wild (WT) murine embryonic stem cells (ESCs), scrambled control (SCR) ESCs, and Strip2 silenced (KD) ESCs
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The role of Striatin Interacting Protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2 silenced (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that KD ESCs remain undifferentiated. This occurs even in 16-day old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes, Hat1 and Dnmt3, enzymatic activities of the histone acetyltransferase type B (HAT1) and DNA (cytosine-5)-methyltransferase 3 beta (DNMT3b) were higher in differentiated 16-day old KD EBs than in SCR or WT EBs. The expression levels of let-7, 290 and 302 microRNA families were opposed in KD ESCs, while KD EBs had levels comparable to WT and SCR ESCs during differentiation. This demonstrates that Strip2 is critical to the onset of differentiation, regulating expression of epigenetic regulators, HAT1 and DNMT3b, as well as microRNAs involved in pluripotency.

Publication Title

STRIP2 Is Indispensable for the Onset of Embryonic Stem Cell Differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87793
EMT blockage is required for mouse nave pluripotent stem cell derivation
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Pluripotency is the differentiation capacity of particular cells exhibited in the early embryo in vivo and embryonic stem (ES) cells have been shown to originate from the inner cell mass (ICM) of an E3.5 blastocyst. Although the potential for ES cells to differentiate into the three germ layers is equated to ICM cells, they differ in the ability to maintain the capacity for self-renewal. Despite several studies on the maintenance of ES cells in the ground state of pluripotency, the precise mechanism of conversion from the ICM to the ES cell remains unclear. Here , we have examined the cell characteristics and expression profile within the intermediate stages of ES cell derivation from the ICM. Gene clustering and ontology (GO) analyses showed a significant change in the expression of epigenetic modifiers and DNA methylation-related genes in the intermediate stages. We have proposed that an epithelial-to-mesenchymal transition (EMT) blockage is required during derivation of mouse ES cells from E3.5 blastocysts. This study suggests a novel mechanistic insight into ES cell derivation and provides a time-course transcriptome profiling resource for the dissection of gene regulatory networks that underlie the transition from ICM to ES cells.

Publication Title

Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43682
Transcriptome of mouse pluripotent embryonic stem cells (mESC) cultured in R2i, 2i, PD and SB conditions
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In this study we have analyzed the global gene expression of nave mouse embryonic stem cells in different culture conditions including R2i (PD0325901+SB431542), 2i (PD0325901+CHIR99021), and also PD0325901+LIF and SB431542+LIF to show the similarities and differences between the conditions in maintaining pluripotency.

Publication Title

Inhibition of TGFβ signaling promotes ground state pluripotency.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE2275
A Bioinformatic Analysis of Arginine-Sensitive Regulation of rat Hepatic Gene Expression
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Goals of the Study:

Publication Title

Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP106855
Chronophin regulates metabolic and transcriptomic features of glioblastoma stem-like cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

High throughput sequencing of poly-A RNA Overall design: Two-condition experiment: Control- and Chronophin shRNA (CIN/PDXP) in glioblastoma stem-like cells

Publication Title

Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions.

Sample Metadata Fields

Disease, Cell line, Subject

View Samples
accession-icon GSE14002
J82 human bladder cell line treated with frankincense oil
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Frankincense oil is prepared from aromatic hardened wood resin obtained by tapping Boswellia trees. For thousands of years, it has been important both socially and economically as an ingredient in incense and perfumes. Frankincense oil is a botanical oil distillate made from fermented plants that contains boswellic acid, a component known to have anti-neoplastic properties. We evaluated frankincense oil-induced cytotoxicity in bladder cancer cells. With a window of concentration, frankincense oil suppressed cell viability and induced cytotoxicity in bladder transitional carcinoma J82 cells but not normal bladder urothelial UROtsa cells immortalized with SV40 large T antigen. However, frankincense oil-induced J82 cell death did not result in DNA fragmentation. Microarray and bioinformatics analysis confirmed that frankincense oil activated cell cycle arrest, suppressed cell proliferation, and activated apoptosis in J82 cells through a series of potential pathways. These finding suggest that bladder cancer can be treated through intravesical administration of pharmaceutical agents similar to direct application on melanoma.

Publication Title

Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact