refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 266 results
Sort by

Filters

Technology

Platform

accession-icon GSE75620
Transcriptomic study of hepatocarcinoma cells exposed to sorafenib
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

sorafenib is the treatment of reference for hepatocellular carcinoma (HCC). We applied sorafenib on the human HCC cell line Huh7 and the subclone shRb, carrying a stable knock-down of the expression of the RB1 gene, a key regulator of liver carcinogenesis. Our aim was to better understand the physiologic and metabolic consequences of the exposure of HCC cells to sorafenib.

Publication Title

Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE35014
Discovery of genes regulated by the metastasis suppressor gene, RhoGDI2
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A number of studies find that metastasis suppressor proteins, including RhoGDI2, may function in part though controlling expression of genes regulating metastasis (reviewed in Smith and Theodorescu, Nature Reviews Cancer, 2009, PMID: 19242414). To uncover systematically gene expression patterns dependent on RhoGDI2 expression, we profiled gene expression in stably transfected control (GFP empty vector) UM-UC-3 bladder carcinoma cells (which have lost endogenous expression of RhoGDI2, as occurs commonly in the progression of bladder cancer PMID: 15173088), as well as stably transfected GFP-tagged RhoGDI2 expressing UM-UC-3 cells.

Publication Title

RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE97969
Identification of mRNAs modulated by the HOXB7-MEK signaling cascade
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Transcripts upregulated or downregulated by HOXB7-MEK signaling were identified for use on the microarray using the Affymetrix GeneChip WT PLUS Reagent Kit in comparison with HOXB7-knockdown S2-013 cells that were transfected with rescue-HOXB7 plasmid and treated with MEK inhibitor, and HOXB7-knockdown S2-013 cells that were transfected with rescue-HOXB7 plasmid but not treated with MEK inhibitor.

Publication Title

The transcription factor HOXB7 regulates ERK kinase activity and thereby stimulates the motility and invasiveness of pancreatic cancer cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57203
Syngergistic Effect of JQ1 and Rapamycin for Treatment of Human Osteosarcoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators facilitating the transcription of genes in chromatin areas linked to acetylated histones. JQ1, a BET protein inhibitor, has antiproliferative activity against many cancers, mainly through inhibition of c-MYC and upregulation of p21. In this research, we investigated the use of JQ1 for human osteosarcoma (OS) treatment. JQ1 significantly inhibited the proliferation and survival of OS cells inducing G1 cell cycle arrest, premature senescence, but little effect on apoptosis. Interestingly, c-MYC protein levels in JQ1-treated cells remained unchanged, whereas the upregulation of p21 protein was still observable. Although effective in vitro, JQ1 alone failed to reduce the size of the MNNG/HOS xenografts in immunocompromised mice. To overcome the resistance of OS cells to JQ1 treatment, we combined JQ1 with rapamycin, an mTOR inhibitor. JQ1 and rapamycin synergistically inhibited the growth and survival of OS cells in vitro and in vivo. We also identified that RUNX2 is a direct target of BRD4 inhibition by JQ1 in OS cells. Chromatin immunoprecipitation (ChIP) showed that enrichment of BRD4 protein around RUNX2 transcription start sites diminished with JQ1 treatment in MNNG/HOS cells. Overexpression of RUNX2 protected JQ1-sensitive OS cells from the effect of JQ1, and siRNA-mediated inhibition of RUNX2 sensitized the same cells to JQ1. In conclusion, our findings suggest that JQ1, in combination with rapamycin, is an effective chemotherapeutic option for OS treatment. We also show that inhibition of RUNX2 expression by JQ1 partly explains antiproliferative activity of JQ1 in OS cells.

Publication Title

Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE155496
Expression data from Min6 cells overexpressing control or SPARC adenovirus
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown.

Publication Title

SPARC promotes insulin secretion through down-regulation of RGS4 protein in pancreatic β cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE60542
Revisiting the transcriptional analysis of primary tumors and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The biology underlying nodal metastasis is poorly understood. Transcriptome profiling has helped to characterize both primary tumors seeding nodal metastasis and the metastasis themselves. The interpretation of these data, however, is not without ambiguities. Here we profiled the transcriptomes of 17 papillary thyroid cancer (PTC) nodal metastases, associated primary tumors and primary tumors from N0 patients. We also included patient-matched normal thyroid and lymph node samples as controls to address some limits of previous studies. We found that the transcriptomes of patient-matched primary tumors and metastases were more similar than of unrelated metastases/primary pairs, a result also reported in other organ systems, and that part of this similarity reflected patient background. We found that the comparison of patient-matched primary tumors and metastases was heavily confounded by the presence of lymphoid tissues in the metastasis samples. An original data adjustment procedure was developed to circumvent this problem. It revealed a differential expression of stroma-related gene expression signatures also regulated in other organ systems. The comparison of N0 vs. N+ primary tumors uncovered a signal irreproducible across independent PTC datasets. This signal was also detectable when comparing the normal thyroid tissues adjacent to N0 and N+ tumors, suggesting a cohort specific bias also likely to be present in previous studies with similar statistical power. Classification of N0 vs. N+ yielded an accuracy of 63%, but additional statistical controls not presented in previous studies, revealed that this is likely to occur by chance alone. To address this issue, we used large datasets from The Cancer Genome Atlas and showed that N0 vs. N+ classification rates could not be reached randomly for most cancers. Yet, it was significant, but of limited accuracy (<70%) for thyroid, breast and head and neck cancers.

Publication Title

Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE80026
Comparison between WT and apl in a novel in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We established a novel in vitro tissue culture system (named VISUAL), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE80027
Cell-sorting analysis with SEOR1pro::SEOR1-YFP in a novel in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We established a novel in vitro tissue culture system (named VISUAL), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE72058
Activated neutrophils are associated with pediatric cerebral malaria vasculopathy in Malawian children
  • organism-icon Homo sapiens
  • sample-icon 94 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to characterize the whole blood global gene expression profiles in 98 children with P. falciparum cerebral malaria

Publication Title

Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61973
Expression data from PARK2 overexpression in U251 cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PARK2 (PARKIN) is an E3 ubiquitin ligase whose dysfunction has been associated with the progression of Parkinsonism and human malignancies, and its role in cancer remains to be explored. In this study, we investigated its role in glioma.

Publication Title

Genomic and Functional Analysis of the E3 Ligase PARK2 in Glioma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact