refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 273 results
Sort by

Filters

Technology

Platform

accession-icon GSE59410
Expression data from heterotopically grafted mouse small intestinal epithelium and the normal colonic epithelium
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Epithelia of small and large intestines differ in their structures and functions. Such heterogeneity between these two epithelial tissues might be controlled by both epithelium-intrinsic and -extrinsic programs. By employing the cell transplantation technique developed in our laboratory, we investigated how adult SI epithelial cells behave when heterotopically transplanted onto colon. Then the gene expression profiles of small intestinal epithelium heterotopically transplanted onto colon and control colonic epithelium were compared.

Publication Title

Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP093774
Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation. Overall design: RNA-Seq of KP-4 pancreatic adenocarcinoma cells transfected with control, BRD4 #1 or BRD4 #2 siRNA for 72hrs (n=3 independent sample preparations)

Publication Title

Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13548
Expression data from human cancer cells treated with UPR modulators under ER stress conditions
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The unfolded protein response (UPR) is a cellular defense mechanism against glucose deprivation, a cell condition that occurs in solid tumors.

Publication Title

Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17183
Hepatic gene expression before and during interferon and ribavirin combination therapy
  • organism-icon Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patients who cleared HCV viremia early during therapy tended to show favorable outcomes, whereas patients who needed a longer period to clear HCV had poorer outcomes. We explored the mechanisms of treatment resistance by comparing hepatic gene expression before and during treatment

Publication Title

Differential interferon signaling in liver lobule and portal area cells under treatment for chronic hepatitis C.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE9316
Gene Microarray analysis of Th17 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Th17 cells are enriched by sorting FR4-CD4+ T cells from SKG mice. A large number of Th17 cells also develop spontaneously when CD4+ T cells from IFN-g-deficient (IFN-g-/-) BALB/c mice are transferred to T cell-deficient RAG2-deficient (RAG2-/-) mice and subjected to homeostatic proliferation, whereas they fail to develop in similar transfer of IL-6-deficient (IL-6-/-) CD4+ T cells to IL-6-/- RAG2-/- mice.

Publication Title

Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41737
MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling was carried out in Huh-7.5 cells in which miR-27a was over- or under-expressed. Transfection of cells with pre-miR-27a and pre-miR-control, or anti-miR-27a and anti-miR-control enabled down- and up-regulated genes to be determined, respectively.

Publication Title

MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE112211
Recurrent 8q24 rearrangement in BPDCN: association with immunoblastoid cytomorphology, MYC expression, and drug response
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE112209
Recurrent 8q24 rearrangement in BPDCN: association with immunoblastoid cytomorphology, MYC expression, and drug response (CAL1 vs PMDC05)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare skin-tropic hematological malignancy of uncertain pathogenesis and poor prognosis. We examined 118 BPDCN cases for cytomorphology, MYC locus rearrangement, and MYC expression. Sixty-two (53%) and 41 (35%) showed the classic and immunoblastoid cytomorphology, respectively. Forty-one (38%) MYC+BPDCN (positive for rearrangement and expression) and 59 (54%) MYC-BPDCN (both negative) cases were identified. Immunoblastoid cytomorphology was significantly associated with MYC+BPDCN. All examined MYC+BPDCNs were negative for MYB/MYBL1 rearrangement (0/36). Clinically, MYC+BPDCN showed older onset, poorer outcome, and localized skin tumors more commonly than MYC-BPDCN. MYC was demonstrated by expression profiling as one of the clearest discriminators between CAL-1 (MYC+BPDCN) and PMDC05 (MYC-BPDCN) cell lines, and its shRNA knockdown suppressed CAL-1 viability. Inhibitors for bromodomain and extraterminal protein (BETis) and aurora kinases (AKis) inhibited CAL-1 growth more effectively than PMDC05. We further showed that a BCL2 inhibitor was effective in both CAL-1 and PMDC05, indicating that this inhibitor can be used to treat MYC-BPDCN, to which BETis and AKis are probably less effective. Our data will provide a rationale for the development of new treatment strategies for patients with BPDCN in accordance with precision medicine.

Publication Title

Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE112210
Recurrent 8q24 rearrangement in BPDCN: association with immunoblastoid cytomorphology, MYC expression, and drug response (CAL-1, JQ1 treatment)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare skin-tropic hematological malignancy of uncertain pathogenesis and poor prognosis. We examined 118 BPDCN cases for cytomorphology, MYC locus rearrangement, and MYC expression. Sixty-two (53%) and 41 (35%) showed the classic and immunoblastoid cytomorphology, respectively. Forty-one (38%) MYC+BPDCN (positive for rearrangement and expression) and 59 (54%) MYC-BPDCN (both negative) cases were identified. Immunoblastoid cytomorphology was significantly associated with MYC+BPDCN. All examined MYC+BPDCNs were negative for MYB/MYBL1 rearrangement (0/36). Clinically, MYC+BPDCN showed older onset, poorer outcome, and localized skin tumors more commonly than MYC-BPDCN. MYC was demonstrated by expression profiling as one of the clearest discriminators between CAL-1 (MYC+BPDCN) and PMDC05 (MYC-BPDCN) cell lines, and its shRNA knockdown suppressed CAL-1 viability. Inhibitors for bromodomain and extraterminal protein (BETis) and aurora kinases (AKis) inhibited CAL-1 growth more effectively than PMDC05. We further showed that a BCL2 inhibitor was effective in both CAL-1 and PMDC05, indicating that this inhibitor can be used to treat MYC-BPDCN, to which BETis and AKis are probably less effective. Our data will provide a rationale for the development of new treatment strategies for patients with BPDCN in accordance with precision medicine.

Publication Title

Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE41556
Expression data from rice organs at the reproductive stage
  • organism-icon Oryza sativa
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Plant hormones interact with each other and regulate gene expression to control plant growth and development. To understand the complex network, accumulation of comprehensive and integrative data of gene expression and hormone concentration is important. Using microarray, global gene expression profile was analyzed to compare with plant hormone concentration in 14 parts of rice at reproductive stage.

Publication Title

UniVIO: a multiple omics database with hormonome and transcriptome data from rice.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact