refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 680 results
Sort by

Filters

Technology

Platform

accession-icon GSE115660
RNA microarray studies of aspirin's effect on MnSOD-deficient mutant [EG110, (MT)] and wild-type [EG103, (WT)] Saccharomyces cerevisiae yeast cells
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Non-steroidal anti-inflammatory drugs, principally aspirin (acetylsalicylic acid, ASA), have anti-neoplastic properties, as shown by epidemiological studies on colorectal cancer and many other types of tumours. The chemopreventive and anti-proliferative properties of aspirin towards tumour cells have been shown to be due to the induction of programmed cell death such as apoptosis. Yeast cells are among the experimental models used extensively for the study of oxidative stress and apoptosis in living organisms because yeast, such as S. cerevisiae, retains many of the core eukaryotic cellular processes, including the hallmarks of eukaryotic apoptosis. An important contribution of our previous work has been the clarification of the critical defensive role of the antioxidant mitochondrial enzyme manganese superoxide dismutase (MnSOD) against apoptosis, confirmed to be the attenuation of aspirin-induced superoxide radical accumulation in the yeast mitochondria (Farrugia et al. (2013) FEMS Yeast Res 13, 755-768). To study the possible differential expression of gene transcripts in relation to the induction of apoptosis by aspirin, we used gene expression profiling by means of GeneChip Microarray Technology (Affymetrix). The yeast strains considered for this study included (1) the wild type strain S. cerevisiae EG103, which contains both MnSOD and cytosolic copper, zinc superoxide dismutase (CuZnSOD) and (2) the redox-compromised MnSOD-deficient S. cerevisiae EG110 strain. [This work was financed by the Malta Council for Science and Technology through the R&I Technology Development Programme (Project R&I-2015-001)].

Publication Title

Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22180
In vitro carcinogenicity testing with Balb/c 3T3 Cells treated with various chemical carcinogens
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.

Publication Title

Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP068163
Expression profiling of MCF-7 cells with 10nM treatment of TCDD
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated by environmental toxicants that function as AHR agonists such as 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine uptake transporter that is overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a significant association between TCDD-regulated genes (TRGs) and molecular transport. Overlapping the TCDD-RNA-Seq dataset in this report with a published TCDD-ChIP-seq dataset identified that LAT1 was a direct TCDD/AHR gene target. Short interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated increases in LAT1 mRNA and protein required AHR. TCDD-stimulated increases in LAT1 mRNA was also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an AHR binding site in the LAT1 gene in response to TCDD. In MDA-MB-231 cells, which exhibit high levels of endogenous AHR activity, the levels of endogenous LAT1 mRNA and protein were reduced in response to knockdown of AHR with AHR-siRNA. The regulation of LAT1 by AHR stimulated MDA-MB-231 proliferation. Collectively, these findings have provided a deeper mechanistic understanding of extrinsic and intrinsic regulation of LAT1 by AHR. Overall design: Expression profiling of four replicates of MCF-7 cells treated with 10nM TCDD were compared to expression profiles of four control replicates of MCF-7 cells treated with DMSO by RNA-Seq

Publication Title

Aryl hydrocarbon receptor (AHR) regulation of L-Type Amino Acid Transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE80008
Systemic disease signature of human cutaneous leishmaniasis
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In addition to the recently published in situ transcriptomics of LCL skin lesions (Novais et al., Khouri et al.), we herein present the first systemic disease signature of localized cutaneous leishmaniasis (LCL), using Affymetrix microarrays (HuGene 1.0) followed by systems biology analysis of the PBMC transciptome of LCL patients (n=18), as compared to healthy controls (n=12).

Publication Title

Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE5959
Expression differences in the liver of a congenic mouse with low serum IGF-1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Several studies have shown that bone mineral density (BMD), a clinically measurable predictor of osteoporotic fracture, is the sum of genetic and environmental influences. In addition, serum IGF-1 levels have been correlated to both BMD and fracture risk. We previously identified a Quantitative Trait Locus (QTL) for Bone Mineral Density (BMD) on mouse Chromosome (Chr) 6 that overlaps a QTL for serum IGF-1. The B6.C3H-6T (6T) congenic mouse is homozygous for C57BL/6J (B6) alleles across the genome except for a 30 cM region on Chr 6 that is homozygous for C3H/HeJ (C3H) alleles. This mouse was created to study biology behind both the BMD and the serum IGF-1 QTLs and to identify the gene(s) underlying these QTLs. Female 6T mice have lower BMD and lower serum IGF-1 levels at all ages measured. As the liver is the major source of serum IGF-1, we examined differential expression in the livers of fasted female B6 and 6T mice by microarray.

Publication Title

A chromosomal inversion within a quantitative trait locus has a major effect on adipogenesis and osteoblastogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40791
Usp44 binds centrin to regulate centrosome positioning and suppress tumorigenesis
  • organism-icon Homo sapiens
  • sample-icon 192 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy through restraining the activity of the anaphase-promoting complex (APC). USP44 was identified as a key regulator of APC activation that maintains the association of MAD2 with the APC co-activator Cdc20. However, the physiological importance of USP44 and its impact on cancer biology are unknown. Here, we show that USP44 is required to prevent tumors in mice and is frequently down-regulated in human lung cancer. USP44 inhibits chromosome segregation errors independently of its role in the mitotic checkpoint by regulating proper centrosome separation, positioning, and mitotic spindle geometry, functions that require direct binding to the centriole protein, centrin. These data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.

Publication Title

USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis.

Sample Metadata Fields

Sex, Disease, Disease stage

View Samples
accession-icon GSE5840
The expression patterns of 17b-estradiol responsive genes in wt MCF7, OHT resistant MCF7 and ICI resistant MCF7
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Compare the expression pattern of 17b-estradiol responsive genes in parent, OHT-resistant and ICI-resistant breast cancer cells.

Publication Title

Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP124495
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [Tx FSC]
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of fibroblastic stromal cells of skin-draining and intestinal-draining lymph nodes from endogenous and transplanted lymph nodes at the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP124959
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [resDCs]
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of resident dendritic cells of skin-draining and intestinal-draining lymph nodes from endogenous and lymph nodes transplanted to the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP150769
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [migDC]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of migratory dendritic cells of skin-draining and intestinal-draining lymph nodes from endogenous and lymph nodes transplanted to the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact