refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon SRP112567
Variations in diet type and temperature significantly affect the transcriptional profile of C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The transcriptomes of model organisms have been defined under specific laboratory growth conditions. The standard protocol for Caenorhabditis elegans growth and maintenance is 20ºC on an Escherichia coli diet. Temperatures ranging from 15ºC to 25ºC or feeding with other species of bacteria are considered physiological lab conditions, but the effect of these conditions on the worm transcriptome have not been well characterized. Here, we compare the global patterns of gene expression for the reference Caenorhabditis elegans strain (N2) grown at 15oC, 20oC, and 25oC on two different diets, Escherichia coli and Bacillus subtilis. When C. elegans were fed E. coli and the growth temperature was increased, we observed an enhancement of defense response pathways and down-regulation of genes associated with metabolic functions. However, when C. elegans were fed B. subtilis and the growth temperature was increased, the nematodes exhibited a decrease in defense response pathways and an enhancement of expression of genes associated with metabolic functions. Our results show that C. elegans undergo significant metabolic and defense response changes when the maintenance temperature fluctuates within the physiologically accepted experimental range and that the degree of pathogenicity of the bacterial diet can further alter the worm transcriptome. Overall design: C. elegans mRNA profiles at different temperatures and feeding in six samples, three replicates per sample. Deep sequencing in Illumina HiSeq2500.

Publication Title

Effect of the diet type and temperature on the <i>C. elegans</i> transcriptome.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE49482
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described more than 30 years ago, the phenotype of MM-CSC is still a matter of debate, especially with respect to the expression of syndecan- 1 (CD138). Here, we demonstrate the presence of two subpopulations - CD138++ (95-99%) and CD138low (1-5%) - in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 surface expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are also phenotypically interconvertible. Overall, our results differ from previously published data which attribute a B-cell phenotype to MM-CSC and urge the need to explore more reliable markers to discriminate true clonogenic myeloma cells.

Publication Title

Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE13662
Zalypsis: A novel marine-derived compound with potent antimyeloma activity
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multiple Myeloma (MM) remains incurable, and new drugs with novel mechanisms of action are still needed. In this report, we have analyzed the action of Zalypsis, an alkaloid analogous to certain natural marine compounds, in MM. Zalypsis turned out to be the most potent antimyeloma agent we have tested so far, with IC50s from picomolar to low nanomolar ranges. It also showed remarkable ex vivo potency in plasma cells from patients and in MM cells in vivo xenografted in mice. Besides the induction of apoptosis and cell cycle arrest, Zalypsis provoked DNA double-strand-breaks (DSB), evidenced by an increase in phospho-Histone-H2AX and phospho-CHK2, followed by a striking overexpression of p53 in p53-wild type cell lines. In addition, in those cell lines in which p53 was mutated, Zalypsis also provoked DSB and induced cell death, although higher concentrations were required. Immunohistochemical studies in tumours also demonstrated Histone-H2AX phosphorylation and p53 overexpression. Gene expression profile studies were concordant with these results, revealing an important deregulation of genes involved in DNA-damage response. The potent in vitro and in vivo antimyeloma activity of Zalypsis uncovers the high sensitivity of tumour plasma cells to DSB, and strongly supports the use of this compound in MM patients.

Publication Title

Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33020
CD20 positive cells are undetectable in the majority of multiple myeloma cell lines and are not associated with a cancer stem cell phenotype
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Although new therapies have doubled the survival of multiple myeloma (MM) patients, this remains an incurable disease. It has been postulated that the so-called MM Cancer Stem Cells (MM-CSC) would be responsible for tumor initiation and relapse but their unequivocal identification remains unclear. Here, we investigated in a panel of MM cell lines the presence of CD20+ cells harboring a MM-CSC phenotype. Among the multiple cell lines investigated, only a small population of CD20dim+ cells (0.3%) in the RPMI-8226 cell line was found. CD20dim+ RPMI-8226 cells expressed the plasma cell markers CD38 and CD138 and were CD19-CD27-. Additionally, CD20dim+ RPMI-8226 cells did not exhibit stem-cell markers as shown by gene expression profiling and the aldehyde dehydrogenase (ALDH) assay. Moreover, we demonstrated that CD20dim+ RPMI-8226 cells are not essential for CB17-SCID mice engraftment and show lower self-renewal potential than the CD20- RPMI-8226 cells. These results do not support CD20+ expression for the identification of MM-CSC.

Publication Title

CD20 positive cells are undetectable in the majority of multiple myeloma cell lines and are not associated with a cancer stem cell phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69306
Significant obesity associated gene expression changes are in the stomach but not intestines in obese mice
  • organism-icon Mus musculus
  • sample-icon 129 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.

Publication Title

Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70262
The impact of P53 loss on transcriptome changes following loss of Apc in the intestine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.

Publication Title

A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37369
Caco-2 cell gene expression following co-culture with Lactobacillus casei and Bifidobacterium breve
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To characterize how symbiotic bacteria affect the lolecular and cellular mechanisms of epithelial homeostasis, human colonic Caco-2 cells

Publication Title

Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94341
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE94336
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vivo]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE94334
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vitro]
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact