refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE45744
Whole-genome expression data from normal FVB mouse lung tissue, transgenic cyclin E overexpressing (CEO) normal mouse lung tissue, and transgenic CEO lung adenocarcinomas
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FVB mice were engineered to express wild-type human cyclin E under control of the human surfactant C promoter (CEO mice; Ma et al, PNAS 2007). These mice develop spontaneous lung tumors, which were shown to be adenocarcinoma by histological analysis. Here we compare whole-genome RNA expression levels between the tumors and normal lung of 4 CEO mice as well as 4 nontransgenic animals.

Publication Title

Evidence for tankyrases as antineoplastic targets in lung cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21450
Dysregulated expression and alternative splicing of genes controlling neuritogenesis and axon guidance revealed by exon-sensitive microarrays in models of neurodegeneration
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Mitochondrial dysfunction has been directly or indirectly implicated in the pathogenesis of a number of neurodegenerative disorders including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis (ALS). We used exon-sentive microarrays to characterize the responses to different mitochondrial perturbations in cellular models. We examined human SH-SY5Y neuroblastoma cells treated with paraquat, a neurotoxic herbicide which both catalyzes the formation of reactive oxygen species (ROS) and induces mitochondrial damage in animal models, and SH-SY5Y cells stably expressing the mutant SOD1(G93A) protein, one of the genetic causes of ALS. We identified a common set of genes that have a deregulated transcription and alternative splicing in both models. Noticeably, pathway analysis revealed that the expression of a subset of genes involved in neuritogenesis and axon guidance is perturbed, suggesting that alterations of axonal function may descend directly from mitochondrial damage and be responsible for neurodegenerative conditions.

Publication Title

Mutant SOD1 and mitochondrial damage alter expression and splicing of genes controlling neuritogenesis in models of neurodegeneration.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21298
Profiling wt SOD versus ALS SOD1(G93A) mutant
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Whole-genome profiling of SH-SY5Y cells was done on neuroblastoma SH-SY5Y stably transfected with cDNAs coding for SOD1WT or the mutant SOD1(G93A) protein.

Publication Title

Mutant SOD1 and mitochondrial damage alter expression and splicing of genes controlling neuritogenesis in models of neurodegeneration.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21305
Profiling neuroblastoma SH-SY5Y with Paraquat treatment
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Human SH-SY5Y neuroblastoma cells treated with paraquat, a neurotoxic herbicide which both catalyzes the formation of reactive oxygen species (ROS) and induces mitochondrial damage in animal models was profiled using Affimetrix Exon 1.0 ST GeneChips

Publication Title

Mutant SOD1 and mitochondrial damage alter expression and splicing of genes controlling neuritogenesis in models of neurodegeneration.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE32540
Identification of novel tissue-specific transcription arising from E-cadherin/CDH1 intron2: a novel protein isoform increases gastric cancer cell invasion and angiogenesis.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

E-cadherin, a protein encoded by the CDH1 gene is the dominant epithelial cell adhesion molecule playing a crucial role in epithelial tissue polarity and structural integrity. The progression of 90% or more carcinomas is believed to be mediated by disruption of normal E-cadherin expression, subcellular localization or function. Despite the strong correlation between E-cadherin loss and malignancy the mechanism through how this occurs is not known in most sporadic and hereditary epithelial carcinomas. Previous works have shown the importance of CDH1 intron 2 sequences for proper gene and protein expression supporting the possibility of these being cis-modulators of E-cadherin expression/function. but when co-expressed it led to reduced cell-cell adhesiveness, increased invasion and angiogenesis. By expression array analysis, IFITM1 and IFI27 levels were found to be increased upon CDH1a overexpression. Importantly, CDH1a was found to be de novo expressed in gastric cancer cell lines when compared to normal stomach.

Publication Title

Transcription initiation arising from E-cadherin/CDH1 intron2: a novel protein isoform that increases gastric cancer cell invasion and angiogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE25457
A signature of 6 genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma.
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Hepatocellular carcinoma (HCC) represents a major health problem as it afflicts an increasing number of patients worldwide. Albeit most of the risk factors for HCC are known, this is a deadly syndrome with a life expectancy at the time of diagnosis of less than 1 year. Definition of the molecular principles governing the neoplastic transformation of the liver is an urgent need to facilitate the clinical management of patients, based on innovative methods to detect the disease in its early stages and on more efficient therapies. In the present study we have combined the analysis of a murine model and human samples of HCC to identify genes differentially expressed early in the process of hepatocarcinogenesis, using a microarray based approach. Expression of 190 genes was impaired in murine HCC from which 65 were further validated by low-density array RT PCR. The expression of the best 45 genes was then investigated in human samples resulting in 18 genes which expression was significantly modified in HCC. Among them, JUN, methionine adenosyltransferase 1A and 2A, phosphoglucomutase 1, and acyl CoA dehydrogenase short branched chain indicate defective cell proliferation as well as one carbon pathway, glucose and fatty acid metabolism, both in HCC and cirrhotic liver, a well known preneoplastic condition. These alterations were further confirmed in public transcriptomic datasets from other authors. In addition, vasodilator stimulated phosphoprotein, an actin-associated protein involved in cytoskeleton remodelling, was also found to be increased in the liver and serum of cirrhotic and HCC patients. In addition to revealing the impairment of central metabolic pathways for liver homeostasis, further studies may probe the potential value of the reported genes for the early detection of HCC.

Publication Title

A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7748
Transcriptional profiling of rhesus monkey nuclear transfer embryonic stem cells
  • organism-icon Macaca mulatta
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Derivation of embryonic stem cells (ESC) genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing any immunorejection issues. However, no primate nuclear transfer embryonic stem (ntES) cell lines have been derived to date. Here, we used a modified SCNT technique to produce rhesus macaque SCNT blastocysts at a relatively high efficiency from adult donor cells and we successfully derived two primate ntES cell lines from 304 oocytes (an overall efficiency of 0.7%). Nuclear and mitochondrial DNA analysis confirmed the ntES cell lines were derived from rhesus monkey SCNT blastocysts and both rhesus monkey ntES cell lines exhibited a normal ESC morphology, expressed key stemness markers, were transcriptionally indistinguishable from control ESC lines and differentiated into multiple cell types. This is, to our knowledge, the first confirmed derivation of primate ntES cell lines.

Publication Title

Producing primate embryonic stem cells by somatic cell nuclear transfer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36618
Mechanisms of terminal erythroid differentiation defect in EKLF-deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

EKLF is a Krppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf -/-) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differention in Eklf -/- embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild type and Eklf -/- early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation, with the critical regulator of the cell cycle, E2f2, at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf -/- early erythroid progenitor cells, which showed a delay in the G1-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier, EKLF binding-sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.

Publication Title

Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE7796
Phenotypic Diversity and Altered Environmental Plasticity in Arabidopsis thaliana with Reduced HSP90 Levels
  • organism-icon Arabidopsis thaliana
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to facilitating the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, and decreases developmental stability. Further, by quantitative analysis of morphological phenotypes, we demonstrate that HSP90-reduction increases phenotypic diversity in both seedlings and adult plants. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a central interface between organism, development, and environment.

Publication Title

Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP018932
Zea mays Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

In this study, we sequenced four small RNA libraries derived from mature pollens, in vitro germinated pollens, mature silks and pollinated silks of maize, respectively. In total, 161 known miRNAs belonging to 27 families and 82 novel miRNAs were identified. Of them, miRNAs involved in pollen-silk (pistil) interactions were analyzed. On the male side, miRNA differentially expressed between mature and germinated pollen were identified, some of them participate in pollen germination and tube growth. On the female side, silk-expressed miRNAs respond to pollination were also responsive to stresses, especially drought and fungal invasion. Furthermore, GO analysis of target genes revealed that members related to anxin signal transduction and gene expressional regulation were overrepresented.The results indicated that during pollen-silk interactions, miRNAs-mediated auxin signal transduction plays important roles, and miRNAs took part in complex transcriptional regulating network. Overall design: Examination of 4 different tissues of maize to provide novel information for understanding the post-transcriptional regulations of pollen-pistil interactions

Publication Title

High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact