refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE9717
Rb Intrinsically Promotes Erythropoiesis by Coupling Cell Cycle Exit with Mitochondrial Biogenesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulation of the cell cycle is intimately linked to erythroid differentiation, yet how these processes are coupled is not well understood. To gain insight into this coordinate regulation, we examined the role that the retinoblastoma protein (Rb), a central regulator of the cell cycle, plays in erythropoiesis. We found that Rb serves a cell-intrinsic role and its absence causes ineffective erythropoiesis, with a differentiation block at the transition from early to late erythroblasts. Unexpectedly, in addition to a failure to properly exit the cell cycle, mitochondrial biogenesis fails to be upregulated concomitantly, contributing to this differentiation block. The link between erythropoiesis and mitochondrial function was validated by inhibition of mitochondrial biogenesis. Erythropoiesis in the absence of Rb resembles the human myelodysplastic syndromes, where defects in cell cycle regulation and mitochondrial function frequently occur. Our work demonstrates how these seemingly disparate pathways play a role in coordinately regulating cellular differentiation.

Publication Title

Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150355
Domain-focused CRISPR-screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Increasing fetal hemoglobin (HbF) levels in adult red blood cells provides clinical benefit to patients with sickle cell disease and some forms of beta-thalassemia. To identify potentially druggable HbF regulators in adult human erythroid cells, we employed a protein kinase-domain focused CRISPR/Cas9-based genetic screen with a newly optimized sgRNA scaffold. The screen uncovered the heme-regulated inhibitor HRI (also known as EIF2AK1), an erythroid-specific kinase that controls protein translation, as an HbF repressor. HRI depletion markedly increased HbF production in a specific manner and reduced sickling in cultured erythroid cells. Diminished expression of the HbF repressor BCL11A accounted in large part for the effects of HRI depletion. Taken together, these results suggest HRI as a potential therapeutic target for hemoglobinopathies. Overall design: A CRISPR-screen reveals HRI kinase as a fetal hemoglobin repressor and further validated in HUDEP2 and CD34+ derived primary erythroid cultures.

Publication Title

Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon SRP109284
Developmentally-Faithful and Effective Human Erythropoiesis in Immunodeficient and Kit Mutant Mice
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis of various developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches. Overall design: (mRNA-seq) RNA-seq of human CD235a+ cells isolated 14-16 weeks post-implantation from mouse bone marrow were performed for three biological replicates each of mice xenograted with adult bone marrow-derived human CD34+ cells and cord blood-derived CD34+ cells.

Publication Title

Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE47379
1833 cells expressing RKIP vs control
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE47378
Gene expression data from 1833 cells expressing RKIP vs control
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

RKIP regulates human breast tumor metastasis. We use gene expression array analysis to identify genes regulated by RKIP in human breast cancer cells.

Publication Title

RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10567
Rhesus macaque ileal loop study
  • organism-icon Macaca mulatta
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Salmonella enterica serotype Typhimurium cause a localized enteric infection in immunocompetent patients while human immunodeficiency virus (HIV)-infected patients develop a life threatening bacteremia. We used a rhesus macaque ileal loop model to study how simian immunodeficiency virus (SIV) infection triggers defects in mucosal barrier function that enhance S. Typhimurium dissemination. SIV infection resulted in significant depletion of CD4+ T cells in the intestinal mucosa. Gene expression profiling revealed a defective TH17 response (with suppression of IL-17 and IL-22 expression) and impaired homeostasis of the intestinal epithelium in SIV-infected animals during NTS infection. These findings correlated with an impaired ability of lamina propria CD4+ T cells from SIV-infected macaques to produce IL-17 upon ex vivo stimulation, while production of IFN-gamma was not affected. This cytokine imbalance in SIV-infected animals was associated with reduced expression of genes required for intestinal epithelial maintenance and repair, increased fluid secretion during NTS infection, epithelial damage and translocation of a non-invasive S. Typhimurium mutant. Although no defects in neutrophil recruitment were noted, the ileum of SIV-infected animals contained lower levels of the enzyme myeloperoxidase, which may indicate defects in neutrophil killing capacity. S. Typhimurium was recovered in markedly increased numbers from the mesenteric lymph nodes of SIV-infected macaques, illustrating the increased potential for systemic dissemination during co-infection. Our data suggest that SIV-infection causes a multi-factorial defect in mucosal barrier function that promotes bacterial dissemination.

Publication Title

Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51615
Expression data from rhesus macaque colon, jejunum, and lung
  • organism-icon Macaca mulatta
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

The mucosa that lines the respiratory and gastrointestinal (GI) tracts is an important portal of entry for pathogens and provides the frontline of immune defense against HIV infection. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we have performed a comparative analysis of host gene expression in the lung and GI mucosa in response to SIV infection and antiretroviral therapy.

Publication Title

Enhanced innate antiviral gene expression, IFN-α, and cytolytic responses are predictive of mucosal immune recovery during simian immunodeficiency virus infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51445
Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE25678
Expression Profiling of Erythroid Progenitors After MYB shRNA Knockdown
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MYB plays a critical role as a regulator of erythropoieisis. We have shown that MYB silences epsilon and gamma-globin expression in erythroid progenitors. We here examine erythroid cells at the basophilic erythroblast stage of differentiation with MYB shRNA or control lentiviral transduction prior to differentiation.

Publication Title

MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51436
Expression data from rhesus macaque tongue
  • organism-icon Macaca mulatta
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact