refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-2806
Transcription profiling by array of chicken basilar papillae from low, middle and high frequency segments of the auditory epithelia
  • organism-icon Gallus gallus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Basilar papillae (i.e.auditory epithelia) were isolated from 4-day-old chickens and sectioned into low, middle, and high frequency segments. RNA was isolated from each segment separately, amplified using a two-cycle approach, biotinylated, and hybridized to Affymetrix chicken whole-genome arrays.

Publication Title

Gene expression gradients along the tonotopic axis of the chicken auditory epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33780
Mitochondrial 12S hypermethylation in HeLa cells and A1555G cybrids
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This dataset investigates the transcriptional effect of mitochondrial 12S rRNA hypermethylation, both by overexpressing the mitochondrial methyltransferase mtTFB1 in HeLa cells and by using A1555G cybrids, where the 12S rRNA is hypermethylated. HeLa cells overexpressing a methyltransferase-deficient mtTFB1 (mtTFB1[G65A]) and wild-type A1555A cybrids were used as controls.

Publication Title

Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE113118
Expression data from Saccharomyces cerevisiae strains deleted for the nucleoporin Nup84
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

the nuclear pore complex (NPC) is emerging as an important mediator of cellular processes beyond molecule transport, including control of gene expression, replication and DNA repair.

Publication Title

The Nup84 complex coordinates the DNA damage response to warrant genome integrity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56703
Microarray and ChIP-chip analyses of the THSC/TREX-2 complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56702
Expression data from Saccharomyces cerevisiae strains deleted for the THSC/TREX-2 subunits Thp1, Sac3 and Sus1
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and the NPC-associated THSC/TREX-2 complex.

Publication Title

A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68488
YRA1 overexpression microarray and ChIP-chip
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68487
Expression data from Saccharomyces cerevisae strains overexpressing RNA-binding hnRNP Yra1
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with an imbalance proportion of Yra1, a component of THO/TREX.

Publication Title

Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50187
Microarray and ChIP-chip of Rrm3-Flag in wild-type and npl3 cells, and ChIP-chip of Npl3-Myc in wild type cells
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50186
Expression data from Saccharomyces cerevisae strains deleted for the RNA-binding hnRNP Npl3
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and some heterogeneous nuclear ribonucleoproteins (hnRNPs) mutants.

Publication Title

The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP161686
Epigenetic signatures associated with paternally-expressed imprinted genes in the endosperm
  • organism-icon Arabidopsis thaliana
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genomic imprinting is an epigenetic phenomenon causing parental alleles to be active depending on their parent-of-origin. In plants, imprinted genes are mainly confined to the endosperm, an ephemeral tissue supporting embryo development. Differential methylation of histone H3 on lysine 27 (H3K27me3) established by the Polycomb Repressive Complex 2 (PRC2) is a major regulatory mechanism determining activity of paternally expressed imprinted genes (PEGs) in animals and plants.  Here, we show that the coding region of many PEGs is marked by an epigenetic signature of H3K27me3, H3K9me2 and CHG methylation and that the combination of these three modifications correlates with paternally-biased gene expression in the endosperm. The maternal alleles of PEGs are marked by CHG methylation in the central cell, indicating that the repressive epigenetic signature of PEGs is established before fertilization. We use the presence of the three modifications to predict novel PEGs and propose that genomic imprinting is substantially more common than previously estimated based on expression data.   Overall design: Col × Ler reciprocal crosses were performed using Arabidopsis lines expressing PHE1::NTF and PHE1::BirA. 4DAP siliques were collected and tissue homogenization and nuclei purification were performed from three biological replicates for LerxCol and two for ColxLer using INTACT. Total RNA was extracted from purified nuclei using the mirVana Isolation Kit Protocol (Ambion). mRNA extraction was performed using NEBNext Poly(A) mRNA Magnetic Isolation and the Libraries were prepared with the NEBNext Ultra II RNA Library Prep Kit from Illumina. Samples were sequenced at the National Genomic Infrastructure (NGI) from SciLife Laboratory (Uppsala, Sweden) on an Illumina HiSeq2500 in paired-end 125bp read length.

Publication Title

Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact