refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 323 results
Sort by

Filters

Technology

Platform

accession-icon SRP193059
Identification of a pro-angiogenic functional role for FSP1 positive fibroblast subtype in wound healing
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA sequencing was performed on uninjured, and injured (FSP1, and aSMA expressing) fibroblasts from mice hearts. Fibrosis accompanying wound healing can drive the failure of many different organs. Activated fibroblasts are the principal determinants of post-injury pathological fibrosis as well as physiological repair, making them a difficult therapeutic target. Fibroblasts are a heterogeneous cell population lacking unique functional classification. We demonstrated that FSP1 and aSMA expressing cells are distinct, post-injury fibroblasts in the heart, kidney, and skin and exhibit unique temporal expression patterns. Using mice that express GFP under the FSP1 or aSMA promoters, we isolated these fibroblasts from mouse hearts after myocardial infarction. Protein and transcript arrays, cellular assays as well as in vivo granulation tissue formation were used to determine their functional role(s) in healing and fibrosis. Whereas aSMA+ fibroblasts predominated in producing matrix proteins, FSP1+ fibroblasts significantly promoted angiogenesis. These studies have the potential to shift our focus towards viewing fibroblasts not only molecularly but also as functionally heterogeneous and provide a new paradigm with which to approach treatment for organ fibrosis. Overall design: Fibroblasts were isolated from uninjured BL6 mice for control. FSP1 and aSMA expressing fibroblasts were isolated from transgenic mice that express GFP under FSP1 or aSMA promoter. GFP positive cells were freshly sorted 10 days following myocardial infarction from mice ventricles. RNA was prepared using Ambion RNAqueous kit and submitted for RNA sequencing.

Publication Title

Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE40709
Expression data comparing adult human islets to human embryonic stem cell-derived insulin-positive and insulin-negative cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The study was completed to compare expression profiles of primary human beta cells (in the form of adult human islets), to the expression profile of hESC-derived beta-like cells. A HES3 line modified by homologous recombination to express GFP under the insulin promoter allowed us to FACS sort the hESC-derived cells into purified insulin-positive (presumably beta-like cells), and insulin-negative populations.

Publication Title

The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11190
Interferon signaling and treatment outcome in chronic hepatitis C
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFN-alpha) and ribavirin. It achieves a sustained viral clearance in only 5060% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFN-alpha. In patients with a rapid virological response to treatment, pegIFN-alpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFN-alpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.

Publication Title

Interferon signaling and treatment outcome in chronic hepatitis C.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23742
Gene expression data from mouse liver
  • organism-icon Mus musculus, Mus sp.
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarray analysis to examine which genes are differentially expressed in mice that received a combination of fish oil and indomethacin.

Publication Title

Fish oil and indomethacin in combination potently reduce dyslipidemia and hepatic steatosis in LDLR(-/-) mice.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE6119
Exogenous Glucosamine Globally Protects Chondrocytes from the Arthritogenic Effects of IL-1beta
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Glucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.

Publication Title

Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.

Sample Metadata Fields

Age

View Samples
accession-icon GSE33020
CD20 positive cells are undetectable in the majority of multiple myeloma cell lines and are not associated with a cancer stem cell phenotype
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Although new therapies have doubled the survival of multiple myeloma (MM) patients, this remains an incurable disease. It has been postulated that the so-called MM Cancer Stem Cells (MM-CSC) would be responsible for tumor initiation and relapse but their unequivocal identification remains unclear. Here, we investigated in a panel of MM cell lines the presence of CD20+ cells harboring a MM-CSC phenotype. Among the multiple cell lines investigated, only a small population of CD20dim+ cells (0.3%) in the RPMI-8226 cell line was found. CD20dim+ RPMI-8226 cells expressed the plasma cell markers CD38 and CD138 and were CD19-CD27-. Additionally, CD20dim+ RPMI-8226 cells did not exhibit stem-cell markers as shown by gene expression profiling and the aldehyde dehydrogenase (ALDH) assay. Moreover, we demonstrated that CD20dim+ RPMI-8226 cells are not essential for CB17-SCID mice engraftment and show lower self-renewal potential than the CD20- RPMI-8226 cells. These results do not support CD20+ expression for the identification of MM-CSC.

Publication Title

CD20 positive cells are undetectable in the majority of multiple myeloma cell lines and are not associated with a cancer stem cell phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079913
Effects of the expression of a samble mutant of Kif1-Binding Protein (KBP) on the transcriptome of self-renewing ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mouse ES cells were stably transduced with a lentivirus expressing either wild-type KBP or the stable mutant KBP(KK/RR) and maintained in self-renewing growth conditions. RNA-seq was performed to assess mRNA expression differences caused by the stabilization of KBP. Overall design: 6 samples [a triplicate set for ES cells expressing wild-type KBP and a triplicate set expressing KBP(KK/RR)] were analyzed.

Publication Title

The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49482
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described more than 30 years ago, the phenotype of MM-CSC is still a matter of debate, especially with respect to the expression of syndecan- 1 (CD138). Here, we demonstrate the presence of two subpopulations - CD138++ (95-99%) and CD138low (1-5%) - in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 surface expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are also phenotypically interconvertible. Overall, our results differ from previously published data which attribute a B-cell phenotype to MM-CSC and urge the need to explore more reliable markers to discriminate true clonogenic myeloma cells.

Publication Title

Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE35948
Restoration of miR-214 expression reduces cell growth of myeloma cells through a positive regulation of P53 and inhibition of DNA replication
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

MicroRNAs have been demonstrated to be deregulated in multiple myeloma (MM). We have previously reported the downregulation of miR-214 in MM compared to normal plasma cells. In the present study, we have explored the functional role of miR-214 in myeloma pathogenesis. Ectopic expression of miR-214 reduced cell growth and induced apoptosis of myeloma cells. In order to identify the potential direct target genes of miR-214 which could be involved in the biological pathways regulated by this miRNA, gene expression profiling of H929 myeloma cell line transfected with precursor miR-214 was carried out. Functional analysis revealed significant enrichment for DNA replication, cell cycle phase and DNA binding. We show that miR-214 directly down-regulates the expression of PSMD10, which encodes the oncoprotein gankyrin, and ASF1B, a histone chaperone required for DNA replication, by binding to their 3'-UTR. In addition, gankyrin inhibition induced an increase of P53 mRNA levels and subsequent up-regulation in CDKN1A (p21Waf1/Cip1) and BAX transcripts, which are direct transcriptional targets of p53. In conclusion, we demonstrate that miR-214 function as a tumor suppressor in myeloma by a positive regulation of p53 and inhibition of DNA replication.

Publication Title

Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE13982
Effect of CORM-2 on E. coli transcriptome
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We recently reported that carbon monoxide (CO) has bactericidal activity. To understand its mode of action we analysed the gene expression changes occurring when Escherichia coli, grown aerobically and anaerobically, is treated with the carbon monoxide releasing molecule, CORM-2. The E. coli microarray analysis shows that E. coli CORM-2 response is multifaceted with a high number of differentially regulated genes spread through several functional categories, namely genes involved in inorganic ion transport and metabolism, regulators, and genes implicated in posttranslational modification, such as chaperones. CORM-2 has higher impact in E. coli cells grown anaerobically, as judged by the existence of repressed genes belonging to eight functional classes which are absent in aerobically CORM-2 treated cells. In spite of the relatively stable nature of the CO molecule, our results show that CO is able to trigger a significant alteration in the transcriptome of E. coli which necessarily has effects in several key metabolic pathways.

Publication Title

Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact