refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon GSE10216
Emx2 knock-out urogenital epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Series of samples studying effect of knock out Emx2 in urogenital epithelium of mouse embryos at E10.5.

Publication Title

Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36980
Expression data from post mortem Alzheimer's disease brains
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)

Publication Title

Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36981
Expression data from Alzheimer's disease model mouse
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)

Publication Title

Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE25593
Expression Profiling: during in vitro neural differentiation from mES cells.
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

GeneChip-based screen for genes induced in the initial phase of neural differentiation from ES cells.

Publication Title

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12498
Gene expression profiles regulated by Tead2 mutants, Yap, and cell density in NIH3T3 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its coactivator protein Yki. The role of mammalian Tead proteins in growth regulation, however, remains unknown. Here we examined the role of mouse Tead proteins in growth regulation. In NIH3T3 cells, cell density and Hippo signaling regulated the activity of Tead proteins by modulating nuclear localization of a Yki homologue, Yap, and the resulting change in Tead activity altered cell proliferation. Tead2-VP16 mimicked Yap overexpression, including increased cell proliferation, reduced cell death, promotion of EMT, lack of cell contact inhibition, and promotion of tumor formation. Growth promoting activities of various Yap mutants correlated with their Tead-coactivator activities. Tead2-VP16 and Yap regulated largely overlapping sets of genes. However, only a few of the Tead/Yapregulated genes in NIH3T3 cells were affected in Tead1-/-;Tead2-/- or Yap-/- embryos. Most of the previously identified Yap-regulated genes were not affected in NIH3T3 cells or mutant mice. In embryos, levels of nuclear Yap and Tead1 varied depending on cell types. Strong nuclear accumulation of Yap and Tead1 were seen in myocardium, correlating with requirements of Tead1 for proliferation. However, their distribution did not always correlate with proliferation. Taken together, mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling, but the mechanisms by which Tead/Yap regulate cell proliferation differ depending on cell types, and Tead, Yap and Hippo signaling may play multiple roles in mouse embryos.

Publication Title

Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16963
Induction of pluripotent stem cells from human third molar mesenchymal stromal cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The expression of four transcription factors (OCT3/4, SOX2, KLF4, and c-MYC) can reprogram mouse as well as human somatic cells to induced pluripotent stem (iPS) cells. Expression of the c-MYC, also known as an oncogene, might induce carcinogenesis and thus, iPS cells produced with the use of c-MYC transduction cannot be used for human therapeutic applications. Furthermore, reprogramming efficiency was significantly reduced in the absence of c-MYC transduction. Here, we generated iPS cells from mesenchymal stromal cells (MSCs) derived from human third molars (wisdom teeth) by retroviral transduction of OCT3/4, SOX2, and KLF4 without c-MYC. Interestingly, clonally expanded MSCs, named 10F-15, could be used for iPS cell generation with 100-fold higher efficiency compared to that of other clonally expanded MSCs and human dermal fibroblasts. These iPS cells resembled human embryonic stem (ES) cells in many aspects, including morphology, ES markers expression, global gene expression, epigenetic states, and the ability to differentiate into the three germ layers in vitro and in vivo. Because human third molars are discarded as clinical waste, our data indicate that MSCs isolated from human third molars are a valuable cell source for the generation of iPS cells.

Publication Title

Induction of pluripotent stem cells from human third molar mesenchymal stromal cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP056395
Comparative whole-transcriptomic analysis between normal and AKAP-Lbc-depleted human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Human embryonic stem cells (hESCs) have the unique property of immortality, ability to infinitely self-renew and survive in vitro. In contrast to tumor-deribed cells, their immortality are free from any genomic abberations. Instead, they depend on the AKAP-Lbc/Rho signaling cascade. To understand the downstream way, we performed RNA-seq analyses between normal and AKAP-Lbc-depleted hESCs using the doxycyclin-inducible gene silensing strategy. Overall design: We use the genetically modified hESCs in which AKAP-13-targeting shRNA is induced by doxycyclin(dox) treatment. To minimize cell loss during treatment, anti-apoptotic factor Bcl-XL is overexpressed. We collected RNA from dox-treated and untreated cells in biological triplicate. We measured gene expression in these 2 sample groups using RNA-seq (illumina HiSeq) .

Publication Title

Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE78716
Influence of ATM-mediated DNA damage response on genomic variation in human induced pluripotent stem cells (Affymetrix expression)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome instability is a potential limitation to the research and therapeutic application of induced pluripotent stem cells (iPSCs). Observed genomic variations reflect the combined activities of DNA damage, cellular DNA damage response (DDR), and selection pressure in culture. To understand the contribution of DDR on the distribution of copy number variations (CNVs) in iPSCs, we mapped CNVs of iPSCs with mutations in the central DDR gene ATM onto genome organization landscapes defined by genome-wide replication timing profiles. We show that following reprogramming the early and late replicating genome is differentially affected by CNVs in ATM deficient iPSCs relative to wild type iPSCs. Specifically, the early replicating regions had increased CNV losses during retroviral reprogramming. This differential CNV distribution was not present after later passage or after episomal reprogramming. Comparison of different reprogramming methods in the setting of defective DNA damage response reveals unique vulnerability of early replicating open chromatin to retroviral vectors.

Publication Title

Influence of ATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42252
Expression data from gastric cancer and pancreatic cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cancer cells have wide variety of gene expression profile. The objective of the study is to reveal the cancer-associated gene expression profile.

Publication Title

Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP048990
Comparative transcriptomic analysis of self-organized, in vitro generated optic tissues
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Embryonic stem (ES) cells have a remarkable capacity to self-organize complex, multi-layered optic cups in vitro via a culture technique called SFEBq. During both SFEBq and in vivo optic cup development, Rax (Rx) expressing neural retina epithelial (NRE) tissues utilize Fgf and Wnt/ß-catenin signalling pathways to differentiate into neural retina (NR) and retinal-pigmented epithelial (RPE) tissues, respectively. How these signaling pathways affect gene expression during optic tissue formation has remained largely unknown, especially at the transcriptome scale. Overall design: We generated Day 10 Rx+ optic tissue using SFEBq, exposed these tissues to either Fgf or Wnt/ß-catenin stimulation, and assayed their gene expression at Days 12 and 15 using RNA-Seq. We measured gene expression in these 5 sample groups in biological triplicate using RNA-seq (Illumina HiSeq) .

Publication Title

Comparative, transcriptome analysis of self-organizing optic tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact