refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 131 results
Sort by

Filters

Technology

Platform

accession-icon GSE6662
Cardiac-specific deletion of mnage--trois-1 (MAT1)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The Cdk7/cyclin H/mnage--trois 1 (MAT1) heterotrimer has proposed functions in transcription as the kinase component of basal transcription factor TFIIH and is activated in adult hearts by hypertrophic pathways. Using cardiac-specific Cre, we ablated MAT1 in myocardium. Despite reduced Cdk7 activity, MAT1-deficient hearts grew normally. However, fatal heart failure ensued at 6-8 weeks. By microarray profiling, quantitative RT-PCR, and Western blotting at 4 weeks, genes for energy metabolism were found to be suppressed selectively, including targets of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1). Cardiac metabolic defects were substantiated in isolated perfused hearts and isolated mitochondria. In culture, deleting MAT1 with Cre disrupted PGC-1 function: PGC-1 failed to activate PGC-1-responsive promoters and nuclear receptors, GAL4-PGC-1 was functionally defective, and PGC-1 likewise was deficient. PGC-1 was shown to interact with MAT1 and Cdk7, in co-precipitation assays. Thus, we demonstrate an unforeseen essential role for MAT1 in operation of the PGC-1 family of co-activators.

Publication Title

Ménage-à-trois 1 is critical for the transcriptional function of PPARgamma coactivator 1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117070
The Heritage family study - skeletal muscle gene expression
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiles generated from skeletal muscle biopsies taken from participants of the HERITAGE family study. Participants completed an endurance training regime in which a skeletal muscle biopsy was taken prior to the start and after the final session of the program. Biopsies were used to generate Affymetrix gene expression microarrays.

Publication Title

The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14428
Physiological defects associated with short hairpin RNA-mediated silencing of PGC-1-related coactivator (PRC)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

PRC, a member of the PGC-1 coactivator family, is responsive to serum growth factors and up regulated in proliferating cells. Here, we investigated its in vivo role by stably silencing PRC expression with two different short hairpin RNAs (shRNA#1 and shRNA#4) that were lentivirally introduced into U2OS cells. ShRNA#1 transductants exhibited nearly complete knockdown of PRC protein whereas shRNA#4 transductants expressed PRC protein at approximately 15 percent of the control level. Complete PRC silencing by shRNA#1 resulted in a severe inhibition of respiratory growth, reduced expression of respiratory protein subunits from complexes I, II, III and IV, markedly lower complex I and IV respiratory enzyme levels and diminished mitochondrial ATP production. Surprisingly, shRNA#1 transductants exhibited a striking proliferation of abnormal mitochondria that were devoid of organized cristae and displayed severe membrane abnormalities. Although shRNA#4 transductants had normal respiratory subunit expression and a moderately diminished respiratory growth rate, both transductants showed markedly reduced growth on glucose accompanied by inhibition of G1/S cell cycle progression. Microarray analysis revealed striking overlaps in the genes affected by PRC silencing in the two transductants and the functional identities of these overlapping genes were consistent with the observed mitochondrial and cell growth phenotypes. The consistency between phenotype and PRC expression levels in the two independent transductant lines argues that the defects result from PRC silencing and not from off target effects. These results support a role for PRC in the integration of pathways directing mitochondrial respiratory function and cell growth.

Publication Title

Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP007832
Control of Embryonic Stem Cell Lineage Commitment by Core Promoter Factor, TAF3 (RNA-Seq data)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We report that TAF3, a TBP-associated core promoter factor, is highly enriched in ES cells. In addition to its role in the core promoter recognition complex TFIID, genome-wide binding studies reveal that TAF3 localizes to chromosomal regions bound by CTCF and cohesin. Enrichment for TAF3/CTCF/cohesin bound regions distinguishes TAF3-activated from TAF3-repressed genes. Our findings support a new role of TAF3 in mediating long-range chromatin regulatory interactions to safeguard the finely-balanced transcriptional programs that give rise to pluripotency. Overall design: Comparison of genome-wide expression patterns between TAF3-knockdown and WT embryonic stem cells using mRNA-Seq. Significantly differentially expressed protein-coding genes were identified by comparing control and knock-down samples at each timepoint (ES, embryoid body day 3 (EB3), EB6). Single and paired-end samples were combined at each timepoint, resulting in 3 tests for each gene (based on 8, 4, 4 independent measurements at ES ,EB3, EB6, respectively).

Publication Title

Control of embryonic stem cell lineage commitment by core promoter factor, TAF3.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon GSE17666
Regulatory Role for PC-TP/StarD2 in the Metabolic Response to Peroxisome Proliferator Activated Receptor Alpha (PPAR)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Phosphatidylcholine transfer protein (PC-TP, a.k.a StarD2) is abundantly expressed in liver and is regulated by PPAR. When fed the synthetic PPAR ligand fenofibrate, Pctp-/- mice exhibited altered lipid and glucose homeostasis. Microarray profiling of liver from fenofibrate fed wild type and Pctp-/- mice revealed differential expression of a broad array of metabolic genes, as well as their regulatory transcription factors. Because its expression controlled the transcriptional activities of both PPAR and HNF4 in cell culture, the broader impact of PC-TP on nutrient metabolism is most likely secondary to its role in fatty acid metabolism.

Publication Title

Regulatory role for phosphatidylcholine transfer protein/StarD2 in the metabolic response to peroxisome proliferator activated receptor alpha (PPARalpha).

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE22122
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Characterize the gpm1 mutant growth on dual substrate of ethanol and glycerol

Publication Title

Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16798
Genes regulated after knock-down of Pirin in U937 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pirin (PIR) is a putative transcriptional regulator whose expression is silenced in cells bearing the AML1/ETO and PML/RAR leukemogenic fusion proteins and is significantly repressed in a large proportion of acute myeloid leukemias. PIR expression increases during in vitro myeloid differentiation of primary hematopoietic precursor cells, and ablation of PIR in the U937 myelomonocytic cell line or in murine primary hematopoietic precursor cells results in impairment of terminal myeloid differentiation.

Publication Title

Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE26737
Epigenetic Transgenerational Alterations to Stress Response in Brain Gene Networks and Behaviour
  • organism-icon Rattus norvegicus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Ancestral environmental exposures that promote epigenetic transgenerational inheritance influence all aspects of an individuals life history. Stress experienced during adolescence can affect adult physiological and behavioural phenotypes. The current study utilized a systems biology approach to investigate the interactions of these two forms of epigenetic modification, one carried in the germline transgenerationally and the other contained in the context of life history. A transgenerational epigenetic imprint left by the fungicide vinclozolin promoted regional specific brain gene networks that influenced chronic restraint stress responses to alter adult physiological, brain and behavioural phenotypes. The environmentally-induced epigenetic transgenerational inheritance was found to interact with early life stress response to impact the adult brain genome activity to bring the phenotype into being.

Publication Title

Epigenetic transgenerational inheritance of altered stress responses.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8872
Transcriptional pathways associated with skeletal muscle disuse atrophy in humans
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Disuse atrophy is a common clinical phenomenon which significantly impacts muscle function and activities of daily living. In this study, we did expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse.

Publication Title

Transcriptional pathways associated with skeletal muscle disuse atrophy in humans.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE43221
Transcript levels in CCE WT and RARgamma knockout murine embryonic stem cells treated with either all-trans retinoic acid (8 and 24 hr) or with vehicle control
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Retinoic acid receptors (RARs) , , and heterodimerize with Retinoid X receptors (RXR) , , and and bind the cis-acting response elements known as RAREs to execute the biological functions of retinoic acid during mammalian development. RAR mediates the anti-proliferative and apoptotic effects of retinoids in certain tissues and cancer cells, such as melanoma and neuroblastoma cells. Furthermore, ablation of RAR enhanced the tumor incidence of Ras transformed keratinocytes and was associated with resistance to retinoid mediated growth arrest and apoptosis.

Publication Title

RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact