refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE16152
Effects of Nipped-B and Rad21 sister chromatid cohesin proteins on gene expression in Drosophila ML-DmBG3 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Effects of Nipped-B and Rad21 sister chromatid cohesin proteins on gene expression data in ML-DmBG3 cells derived from Drosophila melanogaster larval central nervous system

Publication Title

Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins.

Sample Metadata Fields

Time

View Samples
accession-icon GSE92988
Expression data from microRNA-520f transfected PANC-1 pancreas carcinoma cells.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

MicroRNA-520f regulates EMT, as it activates CDH1 (mRNA) and E-cadherin (protein) expression, and it suppresses tumor cell invasion. We have characterized miR-520f target genes through whole genome transcriptional profiling of miRNA transfected pancreas cancer cells (PANC-1).

Publication Title

miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting <i>ADAM9</i> and <i>TGFBR2</i>.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP065849
A novel RAF kinase inhibitor with DFG-out binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1000

Description

Purpose: Seek for differential gene expression in vemurafenib-resistant A375 tumors vs. untreated controls to provide a rationale for resistance mechanism Methods: mRNA profiles of vemurafenib-resistant A375 tumors and untreated control tumors were generated by transcriptome sequencing of A375 melanoma bearing mice. Since our xenograft samples contain a mixture of human and mouse RNAs we mapped RNASeq reads against a hybrid human/mouse genome. We than removed reads of potential mouse origin by taking only reads that map uniquely to human chromosomes. On average 23% of reads were removed as potential mouse reads. We than took the remaining reads (on average 77% per sample) to determine the gene expression levels for each sample. Normalized expression levels of 5 resistant samples were compared to 4 untreated control samples to detect differnetially regulated genes which may contribute to vemurfenib resistance Results: Expression levels of several genes were consistently altered in all resistant samples. Expression of e.g. genes encoding SPRY2, SPRY4, DUSP6, CCND1, PIK3R3, FGFR1, EPHA4, MCL1, and IGF1R was down-regulated, whereas expression of PDGFC, VEGFC, ABCB9 and KITLG was increased. Conclusions: Our study reports several differentially expressed genes which may contribute to vemurafenib resistance in A375 tumor bearing mice Overall design: RNA sequencing of genes expressed in A375 tumors bearing mice treated with vemurafenib until in vivo resistance appeared vs. untreated A375 tumors

Publication Title

A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP162257
Cortisol acting through the glucocorticoid receptor is not responsible for exercise-enhanced growth but does affect the white skeletal muscle transcriptome in zebrafish (Danio rerio)
  • organism-icon Danio rerio
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).

Publication Title

Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon E-MEXP-565
Transcription profiling of mouse liver and kidney from PAR bZip triple knockout mice to wild-type or heterozygous mutant mice to identify genes contributing to the morbidity of PAR bZIP triple KO mice and circadian liver detoxification
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy-prone, age at an accelerated rate and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early ageing.

Publication Title

The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE80390
Gene expression analysis of human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes in 2D versus 3D (Engineered heart tissue) format
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of cardiomyocytes cultivated in 2D or age-matched 3D (Engineered heart tissue, EHT) format.

Publication Title

Human Engineered Heart Tissue: Analysis of Contractile Force.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE42106
Cohesin and Polycomb proteins functionally interact to control transcription at silenced, restrained, and active genes
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP169118
Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration
  • organism-icon Danio rerio
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Glucocorticoid drugs are widely used to treat immune-related diseases, but their use is limited by side effects and by resistance, which especially occurs in macrophage-dominated diseases. In order to improve glucocorticoid therapies, more research is required into the mechanisms of glucocorticoid action. In the present study, we have used a zebrafish model for inflammation to study glucocorticoid effects on the innate immune response. In zebrafish larvae, the migration of neutrophils towards a site of injury is inhibited by the synthetic glucocorticoid beclomethasone, while migration of macrophages is glucocorticoid resistant. RNA sequencing was done on on Fluorescence-Activated Cell Sorting (FACS)-sorted macrophages.The results show that the vast majority of the wounding-induced transcriptional changes in these cells are inhibited by beclomethasone, whereas a small subset is glucocorticoid-insensitive. As a result, beclomethasone decreases the number of macrophages that differentiate towards a pro-inflammatory (M1) phenotype, which we demonstrated using a tnfa:eGFP-F reporter line and analysis of macrophage morphology. We conclude that the glucocorticoid resistance of the wounding-induced macrophage migration is due to the insensitivity of the induction of macrophage-specific chemoattractants to glucocorticoid inhibition, which may explain the relative resistance of macrophage-dominated diseases to glucocorticoid therapy. However, the induction of pro-inflammatory genes in macrophages is strongly attenuated, which inhibits their differentiation to an M1 phenotype. Overall design: After anesthesia with 0.02% aminobenzoic acid ethyl ester (tricaine, Sigma Aldrich), the tails of 3 days post fertilization (dpf) embryos were partially amputated with a 1mm sapphire blade (World Precision Instruments) on 2% agarose-coated Petri dishes under a Leica M165C stereomicroscope (Chatzopoulou et al., 2016). Amputated and non-amputated (control) embryos were pretreated for 2 hours with 25 µM beclomethasone (Sigma Aldrich) or vehicle (0.05% dimethyl sulfoxide (DMSO)) in egg water prior to amputation and received the same treatment after the amputation. Macrophages were sorted from Tg(mpeg1.4:mCherry-F) embryos as previously described (Rougeot et al., 2014; Zakrzewska et al., 2010) at 4 hours post amputation (hpa). The sorted cells were collected in QIAzol lysis reagent (Qiagen) for RNA isolation. Extracted total RNA was amplified using the SMART-seq V4 kit (Clontech) for sequencing. The RNA seq libraries generated with the SMART-seq V4 kit were sequenced using an Illumina HiSeq 2500 instrument according to the manufacturer's instructions with a read length of 50 nucleotides.

Publication Title

Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE42105
Cohesin and Polycomb proteins functionally interact to control transcription at silenced, restrained, and active genes [expression array data]
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Cohesin is crucial for proper chromosome segregation, but also regulates gene transcription and organism development by poorly understood mechanisms. We find that in Drosophila, cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes. In contrast, cohesin and PRC1 binding are mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase and mRNA at many active genes, but increases them at silenced genes. Cohesin also facilitates long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These multiple distinct cohesin-PcG interactions reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription, and provide new insights into how cohesin and PRC1 control development.

Publication Title

Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE80002
Transcriptome analysis of Escherichia coli during dGTP Starvation
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Our laboratory has recently discovered that E. coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for Thymineless Death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses on actively growing optA1 gpt strains subjected to hypoxanthine deprivation for increasing periods of time. The data show that, upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to de-repress the de novo purine biosynthesis genes, and this is likely due to internal guanine accumulation. The impairment to fully induce the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS is observed, supporting the concept of replication stress as a final cause of death. No evidence was observed for the participation of other stress responses, including the rpoS-mediated global stress response in the starved cells, and reinforcing the lack of feedback of replication stress into the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient is observed for expression of genes located nearby the replication origin relative to those located towards the replication terminus.

Publication Title

Transcriptome Analysis of Escherichia coli during dGTP Starvation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact