refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE26174
Gene Expression Profiling of the Retina after Transcorneal Electrical Stimulation in Wildtype Brown Norway Rats
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Purpose: To investigate the effect of transcorneal electrical stimulation (TES) on the retina of wildtype Brown Norway (BN) rats by gene expression profiling.

Publication Title

Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE58220
Expression data from primary term human decidual cells treated with interleukin-1-beta for 6 hours.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Preterm birth is an important unsolved clinical problem. Despite advanced treatments, infants who survive prematurity remain at increased risk for permanent disabilities. In approximately one-third of cases, prematurity is related to infection and/or inflammation, which renders hostile the normally receptive intrauterine environment. Proinflammatory cytokines provoke up-regulation of genes that promote uterine contractions. Using monolayer cultures of human decidual cells as a model, we profiled the global pattern of gene expression in response to cytokine challenge.

Publication Title

Inflammatory gene networks in term human decidual cells define a potential signature for cytokine-mediated parturition.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE44260
Murine germinal center and naive B cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expressions of murine germinal center and naive B cells on Affymetrix platform

Publication Title

Multiple transcription factor binding sites predict AID targeting in non-Ig genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE92988
Expression data from microRNA-520f transfected PANC-1 pancreas carcinoma cells.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

MicroRNA-520f regulates EMT, as it activates CDH1 (mRNA) and E-cadherin (protein) expression, and it suppresses tumor cell invasion. We have characterized miR-520f target genes through whole genome transcriptional profiling of miRNA transfected pancreas cancer cells (PANC-1).

Publication Title

miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting <i>ADAM9</i> and <i>TGFBR2</i>.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE72149
Autism-like syndrome is induced in mice by pharmacological suppression of BET proteins
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.

Publication Title

Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49373
Expression data from the lungs of Scnn1b-Transgenic and wild-type mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Airway mucus obstruction triggers macrophage activation and MMP12-dependent emphysema

Publication Title

Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59557
Expression data of in vitro generated regulatory T cells overexpressing E47
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

E47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.

Publication Title

Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16974
Retinal gene expression in Egr-1 knock-out mice during development (p30 and p42)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In chicks, the avian homologue of the early growth response protein-1 (ZENK) has been shown to be increased in a special cell type of the retina, the glucagonergic amacrine cells, under conditions that lead to a reduction in eye growth (myopic defocus, recovery of myopia) and decreased under conditions that enhance ocular growth (hyperopic defocus, form-deprivation). The investigation of Egr-1 knock-out mice showed that homozygous knock-out mice with no functional Egr-1 protein developed relative axial myopia at the age of 42 and 56 days, compared to heterozygous- and wildtype Egr-1 knock-out mice.

Publication Title

Microarray analysis of retinal gene expression in Egr-1 knockout mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11439
Retinal gene expression in chicks during imposed myopic defocus
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The retina plays an important regulatory role in ocular growth. To screen for new retinal candidate genes that could be involved in the inhibition of ocular growth, we used chick microarrays to analyze the changes in retinal mRNA expression after myopic defocus was imposed by positive lens-wear.

Publication Title

Microarray analysis of retinal gene expression in chicks during imposed myopic defocus.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE100202
SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The transcription factor SRF (serum response factor) mediates epilepsy mediated gene expression

Publication Title

SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact