refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon SRP186866
Progressive dosage compensation during Drosophila embryogenesis is reflected by gene arrangement on the X chromosome [RNA-seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

In D. melanogaster males, X chromosome monosomy is compensated by chromosome-wide transcription activation. We found that complete dosage compensation during embryogenesis takes surprisingly long. Although the activating Dosage Compensation Complex (DCC) associates with the chromosome and acetylates histone H4 early, many genes are not compensated. Acetylation levels on gene bodies continue to increase for several hours after gastrulation in parallel with progressive compensation. Constitutive genes are compensated earlier than developmental genes. Remarkably, later compensation correlates with longer distances to DCC binding sites. This time-space relationship suggests that DCC action on target genes requires maturation of the active chromosome compartment. Overall design: RNA-seq in 8 embryonic stages in total 54 single embryos.

Publication Title

Progressive dosage compensation during Drosophila embryogenesis is reflected by gene arrangement.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP066445
Investigating gene expression changes upon ageing in chm mutants
  • organism-icon Drosophila melanogaster
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

We report here mRNA-seq data of adult male Drosophila head tissues. We compare two different ages: young and midlife as well as chm/chameau (CG5229) heterozygous mutants. Overall design: Comparison of ageing effect (young vs. midlife) in wild-type and mutant.

Publication Title

Life span extension by targeting a link between metabolism and histone acetylation in Drosophila.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE11558
transcript profiling of the adaptive response to decreases in oxygen concentration in the roots of Arabidopsis plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

- Background and Aims: Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to relative small changes in oxygen concentrations to avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The aim of this study was to use transcript and metabolite profiling to investigate the genomic response of Arabidopsis roots to a mild decrease in oxygen concentrations.

Publication Title

Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-122
Transcription profiling of leukemic cells of monozygotic twins
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We established gene expression profiles of diagnostic bone marrow samples of monozygotic twins with acute lymphoblastic leukemia. We established technical duplicates for each twin.

Publication Title

Prenatal origin of separate evolution of leukemia in identical twins.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE92988
Expression data from microRNA-520f transfected PANC-1 pancreas carcinoma cells.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

MicroRNA-520f regulates EMT, as it activates CDH1 (mRNA) and E-cadherin (protein) expression, and it suppresses tumor cell invasion. We have characterized miR-520f target genes through whole genome transcriptional profiling of miRNA transfected pancreas cancer cells (PANC-1).

Publication Title

miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting <i>ADAM9</i> and <i>TGFBR2</i>.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE72149
Autism-like syndrome is induced in mice by pharmacological suppression of BET proteins
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.

Publication Title

Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59557
Expression data of in vitro generated regulatory T cells overexpressing E47
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

E47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.

Publication Title

Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16974
Retinal gene expression in Egr-1 knock-out mice during development (p30 and p42)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In chicks, the avian homologue of the early growth response protein-1 (ZENK) has been shown to be increased in a special cell type of the retina, the glucagonergic amacrine cells, under conditions that lead to a reduction in eye growth (myopic defocus, recovery of myopia) and decreased under conditions that enhance ocular growth (hyperopic defocus, form-deprivation). The investigation of Egr-1 knock-out mice showed that homozygous knock-out mice with no functional Egr-1 protein developed relative axial myopia at the age of 42 and 56 days, compared to heterozygous- and wildtype Egr-1 knock-out mice.

Publication Title

Microarray analysis of retinal gene expression in Egr-1 knockout mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11439
Retinal gene expression in chicks during imposed myopic defocus
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The retina plays an important regulatory role in ocular growth. To screen for new retinal candidate genes that could be involved in the inhibition of ocular growth, we used chick microarrays to analyze the changes in retinal mRNA expression after myopic defocus was imposed by positive lens-wear.

Publication Title

Microarray analysis of retinal gene expression in chicks during imposed myopic defocus.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon E-MTAB-912
Spermidine Yeast Aging Array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extends the lifespan of various model organisms including yeast, flies and worms. In ageing yeast, spermidine treatment triggeres epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), leading to induction of autophagy and thereby suppressing oxidative stress and necrosis. In order to further characterize the effects by spermidine supplementation of aging yeast cultures and to understand how global histone deacetylation affects gene transcription during aging, Affymetrix-based microarray analyses of three day old as well as ten day old cultures with and without administration of spermidine was performed.

Publication Title

Induction of autophagy by spermidine promotes longevity.

Sample Metadata Fields

Age, Compound, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact