refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE28582
Gene Copy Number Aberrations are Associated with Survival in Histological Subgroups of Non-Small Cell Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 100 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28571
Gene Copy Number Aberrations are Associated with Survival in Histological Subgroups of Non-Small Cell Lung Cancer (expression data)
  • organism-icon Homo sapiens
  • sample-icon 100 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hypothesis: Non-small cell lung cancer (NSCLC) is characterized by a multitude of genetic aberrations with unknown clinical impact. In this study, we aimed to identify gene copy number changes that correlate with clinical outcome in NSCLC. To maximize the chance to identify clinically relevant events, we applied a strategy involving two prognostically extreme patient groups.

Publication Title

Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50677
Human memory T cells of the bone marrow are resting and maintain long-lasting memory
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To compare human memory CD4+ T cell subsets in peripheral blood (PB) and bone marrow (BM) of healthy individuals at transcriptional level, we analyzed the global gene expression of ex vivo PB CD69- as well as BM CD69- and CD69+ memory CD4+ T cells from 4 paired PB and BM samples. The gene expression of these subsets was additionally compared to the transcriptional profile of 8 PB samples taken ex vivo or stimulated with phorbol myristate acetate (PMA) and Ionomycin for 3 hours.

Publication Title

Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18818
Expression data from overexpressers and mutants of TFs-gene LBD37 and LBD38 under different nitrogen regimes
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth and development. N/NO3- also suppresses parts of secondary metabolism including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38 and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana). Over-expression of each of the three genes in the absence of N/NO3- strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38 or lbd39 T-DNA insertion mutants accumulate anthocyanins when grown in N/NO3--sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes including key genes required for NO3- uptake and assimilation, resulting in altered NO3- content, nitrate reductase activity/activation, protein, amino acid and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressers of anthocyanin biosynthesis and N-availability signals in general. They also show that besides being developmental regulators LBD genes fulfill roles in metabolic regulation.

Publication Title

Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE83136
Long recovery after heat shock
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Abiotic stress is a major factor for crop productivity, a problem likely to be exacerbated by climate change. Improving the tolerance to environmental stress is one of the most important goals of crop breeding programmes. While the early responses to abiotic stress in plants are well studied, plant adaptation to enduring or recurring stress conditions has received little attention. This project investigates the molecular mechanism of the maintenance of acquired thermotolerance as a model case of stress memory in Arabidopsis. Arabidopsis seedlings acquire thermotolerance through a heat treatment at sublethal temperatures. To investigate the underlying mechanisms, we are investigating changes in the transcriptome at two timepoints after a heat acclimation treatment using Arabidopsis thaliana seedlings.

Publication Title

Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE64972
Transcriptome analysis of plant sulphate starvation and resupply
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Sulphur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulphur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulphate starvation have been studied in the past, knowledge of the regulation of sulphur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using omics technologies. For this purpose a short term sulphate-starvation / re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulphate starvation. Categorization by response behaviors under sulphate-starvation / re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes.

Publication Title

Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66981
Genome-wide analysis of gene expression in mouse pancreas tumors
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Genetically engineered mice developed spontaneous pancreas cancer (Pdx-Cre;LSL-KRASG12D;P53Mut). Mice were also engineered to develop similar spontaneous pancreas cancer without Twist or Snail (conditional gene knockout). The pancreas tumors were harvested and analysed for gene expression profiles comparisons.

Publication Title

Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55486
Defective Mitophagy in XPA via PARP1 activation and NAD+/SIRT1-depletion: Implications for neurodegeneration
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.

Sample Metadata Fields

Sex, Cell line, Treatment

View Samples
accession-icon GSE55485
Defective Mitophagy in XPA via PARP1 activation and NAD+/SIRT1-depletion: Implications for neurodegeneration (mouse)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1 axis triggered by hyperactivation of the DNA damage sensor PARP1. This phenotype is rescued by PARP1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a novel nuclear-mitochondrial cross-talk that is critical for the maintenance of mitochondrial health.

Publication Title

Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE3416
Diurnal gene expression in Arabidopsis thaliana Col-0 rosette leaves
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

How do the transcript levels of leaf-expressed genes change in a normal day-night cycle? The interest is in genes that are regulated by the circadian clock and the diurnal component (i.e. light, metabolite changes). Plants were grown on soil in a 12/12 h light/dark rythm at 20C day and night. 5 weeks after germination the rosettes of the non-flowering plants were harvested, 15 plants per sample. Plants were harvested at 6 timepoints every 4 hours beginning with the end of the night (still in darkness).

Publication Title

Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact