refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE21668
Expression data from undifferentiated human embryonic stem cells (hESC) and Day 3.5 mesodermal progenitor (CD326neg CD56+) population
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Our understanding of how mesodermal tissue is formed, has been limited by the absence of specific and reliable markers of early mesoderm commitment. We report that mesoderm commitment from human embryonic stem cells (hESC) is initiated by Epithelial to Mesenchymal transition (EMT) as shown by gene expression profiling and by reciprocal changes in expression of the cell surface proteins, EpCAM/CD326 and NCAM/CD56. Molecular and functional assays reveal that CD326negCD56+ cells, generated from hESC in the presence of activin A, BMP4, VEGF and FGF2, represent a novel, multi-potent mesoderm-committed progenitor population. CD326negCD56+ progenitors are unique in their ability to generate all mesodermal lineages including hematopoietic, endothelial, mesenchymal (bone, cartilage, fat, fibroblast), smooth muscle and cardiomyocytes, while lacking the pluripotency of hESC. CD326negCD56+ cells are the precursors of previously reported, more lineage-restricted mesodermal progenitors. These findings present a novel approach to study how germ layer specification is regulated, and offer a unique target for tissue engineering.

Publication Title

Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41363
Role of the Cytoskeleton in muscle transcriptional response to altered use
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Desmin is a cytoskeletal protein in muscle involved in integrating cellular space and transmitting forces. In this study we sought to determine the combinatory effects of desmin deletion, aging and eccentric exercise on skeletal muscle at the transcriptional level across many pathways of muscle physiology.

Publication Title

Role of the cytoskeleton in muscle transcriptional responses to altered use.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE47209
Differential regulation of gene expression by two isoforms of the human transcriptional coactivator MKL1
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We identified two isoforms of human MKL1 that differ in their N-terminal domains. Since MKL1 is a transcriptional coactivator of SRF and regulates many SRF target genes, we wanted to analyze if transcription is differentially regulated by the two isoforms upon stimulation of the Rho-actin-MKL1-SRF pathway.

Publication Title

TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE18945
Tonicity iduced changes in gene expression in IMCD cells and the effect of Cyclosporin A
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Cyclosporin A induces expression of proapoptotic factors when cells are challenged by increased tonicity

Publication Title

Cyclosporin-A induced toxicity in rat renal collecting duct cells: interference with enhanced hypertonicity induced apoptosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP188226
CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This study examines the extent to which memory CD4+ T cells share immunosurveillance strategies with CD8+ resident memory T cells (TRM). After acute viral infection, memory CD4+ T cells predominantly utilized residence to survey nonlymphoid tissues, albeit not as stringently as observed for CD8+ T cells. In contrast, memory CD4+ T cells were more likely to be resident within lymphoid organs than CD8+ T cells. Migration properties of memory-phenotype CD4+ T cells in non-SPF parabionts were similar, generalizing these results to diverse infections and conditions. CD4+ and CD8+ TRM shared overlapping transcriptional signatures and location-specific features, such as granzyme B expression in the small intestine, revealing tissue-specific and migration property-specific, in addition to lineage-specific, differentiation programs. Functionally, mucosal CD4+ TRM reactivation locally triggered both chemokine expression and broad immune cell activation. Thus, residence provides a dominant mechanism for regionalizing CD4+ T cell immunity, and location enforces shared transcriptional, phenotypic, and functional properties with CD8+ T cells. Overall design: 17 samples were analyzed by RNA-Sequencing: 3 replicates of resident memory SMARTA CD4 cells (CD62L- CD69+) from the female reproductive tract (FRT) , 2 replicates of resident memory SMARTA CD4 cells (CD62L- CD69+) from the small intestine epithelium (IEL), 3 replicates of resident memory SMARTA CD4 cells (CD62L- CD69+) small intestine lamina propria (LP), 3 replicates of resident memory SMARTA CD4 cells (CD62L- CD69+) from the spleen (SLO), 3 replicates of SMARTA CD4 cells (CD62L+ CD69- or TCM) from the spleen of mice, and 3 replicates of SMARTA CD4 cells (CD62L- CD69- or TEM) from the spleen of mice infected with LCMV-Armstrong 54 days prior.

Publication Title

CD4<sup>+</sup> resident memory T cells dominate immunosurveillance and orchestrate local recall responses.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP014006
RNA sequencing in fly heads to examine the effect of spermidine feeding on transcription in the ageing fly brain.
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

mRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.

Publication Title

Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE109060
A non-lymphoid origin for lymph node resident memory T cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Immunosurveillance of secondary lymphoid organs (SLO) is performed by central memory T cells that recirculate through blood. Resident memory T cells (TRM) remain parked in nonlymphoid tissues and often stably express CD69. We recently identified TRM within SLO, and this study addresses knowledge gaps in their origin and phenotype. Parabiosis of dirty mice revealed that CD69 expression is insufficient to infer stable residence. Using selective depletion strategies, parabiosis, imaging, tissue grafting, and photoactivatable T cells, we report that restimulation of TRM within the skin or mucosa results in a substantial increase in TRM that patrol all regions of draining lymph nodes. SLO TRM were derived from nonlymphoid tissue residents. Transcriptional profiling and flow cytometry revealed a refined phenotype shared between both nonlymphoid and SLO TRM. These data demonstrate the nonlymphoid origin of SLO TRM and suggest vaccination strategies by which memory CD8 T cell immunosurveillance can be regionalized to specific lymph nodes.

Publication Title

T Cells in Nonlymphoid Tissues Give Rise to Lymph-Node-Resident Memory T Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15236
Expression profiling of the Arabidopsis Mediator complex mutant pft1/med25 and wildtype infected with Fusarium oxysporum
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Mediator complex is an evolutionary conserved multiprotein complex that plays an essential role in initiating and regulating transcription. Its function is to act as a universal adaptor between RNA Polymerase II and DNA-bound transcription factors to translate regulatory information from activators and repressors to the transcriptional machinery. We have found that the PFT1 gene (which encodes the MED25 subunit of the Mediator complex) is required for the uncompromised expression of both salicylic acid- and jasmonate-dependent defense genes as well as resistance to the leaf-infecting fungal pathogens, Alternaria brassicicola and Botrytis cinerea in Arabidopsis. Surprisingly, we found that the pft1/med25 mutant showed increased resistance to the root infecting pathogen Fusarium oxysporum and that this resistance was independent of classical defense genes. In addition, the over-expression of PFT1 led to increased susceptibility to F. oxysporum. Therefore, to explore this phenomenon further, we wished to use whole genome transcript profiling to identify which genes may be playing a role in pft1/med25-mediated resistance to F. oxysporum.

Publication Title

The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP076097
TLR2/1 ligand and IFN-g inducible genes in human monocyte-derived macrophages (MDMs)
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome profiles for innate and adaptive immune stimuli important for host response against mycobacteria. Human monocyte-derived macrophages were stimulated with TLR2/1 ligand and interferon-g, stimuli present during innate and adaptive immune responses, respectively. Overall design: Human monocyte-dervided macrophages from five healthy donors were stimulated with TLR2/1L, IFN-g, or media control for 2, 6, and 24 hours. RNA-sequencing was performed on a total of 45 samples.

Publication Title

S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE57915
The combinatorial code governing cellular responses to complex stimuli
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Integration of multiple signals shapes cell adaptation to their microenvironment through synergistic and antagonistic interactions. The combinatorial complexity governing signal integration for multiple cellular output responses has not been resolved. For outputs measured in the conditions 0 (control), signals X, Y, X+Y, combinatorial analysis revealed 82 possible interaction profiles, which we biologically assimilated to 5 positive, and 5 negative interaction modes. To experimentally validate their use in living cells, we designed an original computational workflow, and applied it to transcriptomics data of innate immune cells integrating physiopathological signal combinations. Up to 9 of the 10 defined modes coexisted in context-dependent proportions. Each integration mode was enriched in specific molecular pathways, suggesting a coupling between genes involved in particular functions, and the corresponding mode of integration. We propose that multimodality and functional coupling are general principles underlying the systems level integration of physiopathological and pharmacological stimuli by mammalian cells.

Publication Title

Combinatorial code governing cellular responses to complex stimuli.

Sample Metadata Fields

Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact