refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE66488
Characterization of tumor extracellular vesicle RNA cargo
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Comparative RNA profiling between tumor cells and their secreted extracellular vesicles. Results revealed enrichment in genes involved in cellular migration and metastasis in extracellular vesicles, in agreement with their role as mediators of tumor progression.

Publication Title

In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE19624
Vascular gene expression in mice overexpressing human endothelin-1 targeted to the endothelium
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Endothelin-1 (ET-1), an endothelium-derived vasoconstrictor peptide, plays a role in the pathophysiology of cardiovascular disease. Transgenic mice that overexpress human preproET-1 selectively in the endothelium (eET-1) exhibit endothelial dysfunction, hypertrophic remodeling and vascular inflammation of resistance-size arteries in the absence of blood pressure elevation. To understand the mechanisms whereby ET-1 induces vascular damage, vascular gene expression using DNA microarrays was employed. RNA from mesenteric arteries of female and male young (6-7 weeks) and mature (6-8 months) eET-1 and wild type (WT) mice was isolated and changes in gene expression were determined by genome-wide expression profiling using Illumina microarray. This study revealed a set of genes potentially regulated by ET-1, which might be implicated in ET-1 induced-vascular damage.

Publication Title

Vascular gene expression in mice overexpressing human endothelin-1 targeted to the endothelium.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE119061
Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-beta signaling
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability.

Publication Title

Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE69590
HBV Infection and DNA Stimulation Induce a Unique Innate Immune Response in Hepatocytes
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background and Aims: Recent identification of intracellular DNA sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and autoimmunity suggests a role for these processes in liver pathology. The presence of these pathways in the liver and their role in HBV infection is unknown. Methods: In order to characterize the role of DNA sensing pathways in the liver, we utilized in vitro models. Microarray was performed on DNA treated and HBV infected hepatoma primary human hepatocytes. Results: Here we show that HBV infection and foreign DNA results in a significant innate immune response characterized by the production of inflammatory chemokines.

Publication Title

Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE8141
Expression data from MCF7 wt and MCF7/HER2-18 xenografts
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.

Publication Title

Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8139
Expression data from MCF7/HER2-18 xenografts
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.

Publication Title

Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8140
Expression data from MCF7 wt xenografts
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.

Publication Title

Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7327
Expression data from MCF7 xenografts
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to help determine the genes involved in resistance of breast cancer to endocrine therapy, we compared global gene expression profiles of tamoxifen-resistant MCF-7 WT xenograft tumors with E2-supplemented tumors.

Publication Title

Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94381
Global gene expression analysis highlights microgravity sensitive key genes in longissimus dorsi and tongue of 30 days space-flown mice
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Microgravity as well as chronic muscle disuse are two causes of low back pain originated at least in part from paraspinal muscle deconditioning. At present no study investigated the complexity of the molecular changes in human or mouse paraspinal muscles exposed to microgravity. The aim of this study was to evaluate longissimus dorsi and tongue (as a new potential in-flight negative control) adaptation to microgravity at global gene expression level. C57BL/N6 male mice were flown aboard the BION-M1 biosatellite for 30 days (BF) or housed in a replicate flight habitat on ground (BG). . Global gene expression analysis identified 89 transcripts differentially regulated in longissimus dorsi of BF vs. BG mice (False Discovery Rrate < 0,05 and fold change < -2 and > +2), while only a small number of genes were found differentially regulated in tongue muscle ( BF vs. BG = 27 genes).

Publication Title

Microgravity-Induced Transcriptome Adaptation in Mouse Paraspinal &lt;i&gt;longissimus dorsi&lt;/i&gt; Muscle Highlights Insulin Resistance-Linked Genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80223
Global gene expression analysis highlights microgravity sensitive key genes in soleus and EDL of 30 days space flown mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Microgravity exposure as well as chronic muscle disuse are two of the main causes of physiological adaptive skeletal muscle atrophy in humans and murine animals in physiological condition. The aim of this study was to investigate, at both morphological and global gene expression level, skeletal muscle adaptation to microgravity in mouse soleus and extensor digitorum longus (EDL). Adult male mice C57BL/N6 were flown aboard the BION-M1 biosatellite for 30 days on orbit (BF) or housed in a replicate flight habitat on Earth (BG) as reference flight control.

Publication Title

Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact