refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE17939
MEK5D-transfected HUVEC
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We expressed a constitutively active mutant of MEK5 (MEK5D) in human primary endothelial cells (EC) to study the transcriptional and functional responses to Erk5 activation under static conditions.

Publication Title

Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4).

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34828
Expression data from fibroblast growth factor receptor 4 (FGFR4) knock down ovarian cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Advanced ovarian cancer is the most lethal gynecologic malignancy in the United States. Currently patients are treated by surgical cytoreductive surgery with the aim of reducing tumor burden to microscopic disease followed by adjuvant combined treatment with a platinum and taxane containing chemotherapy, which affords 80% of patients an initial complete response. However, Abdominal and pelvic recurrence rates are high and response to further chemotherapy is limited. Attempts at introducing biologic therapeutic agents to improve outcome in this disease are ongoing, while prognostic or predictive biomarkers that can stratify patients for treatment are still lacking. Using a 60-mer 22K oligonucleotide-based array comparative genome hybridization (CGH) platform combined with DNA isolated from microdissected tumor tissue samples, Birrer et. al. reported that the amplification of 5q31-35.3 in ovarian cancer cells is a negative prognostic indicator for patients with advanced stage high-grade serous ovarian cancer (HGSC). Further studies showed that fibroblast growth factor 1 (FGF1) located in the amplicon, may be one of the driving genes for ovarian cancer progression (Birrer et. al., 2007). Besides FGF1, located on the same amplicon is one of its receptors fibroblast growth factor receptor 4 (FGFR4), suggesting that it may also be amplified and may be another driving gene involved in ovarian cancer pathogenesis.In this study, we used microarrays to explore and compare gene expression profiles between FGFR4 knock down ovarian cancer cell lines and their corresponding parental cell lines.

Publication Title

Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26410
Inflammation leads to loss of smooth muscle cells but fails to induce invasiveness in a prostate tumor model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Inflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma.

Publication Title

Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE74297
MALT1 protease activity controls the expression of inflammatory genes in keratinocytes upon Zymosan stimulation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.

Publication Title

MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE140882
Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Diffuse large B-cell lymphoma (DLBCL) represents the most common form of lymphoma. We could show that in DLBCL cell lines the transcription factor NFAT is constitutively activated and drives the survival of a DLBCL subset. Aim of the analysis was to identify NFAT target genes in a NFAT-dependent (HBL-1) or -independent (HT) DLBCL cell line. To block NFAT activity, the DLBCL cells were treated with the calcineurin inhibitor cyclosporin A (CsA) up to 48 h. With this approach, we identified several survival-related NFAT target genes in HBL-1 cells that might explain the toxic effects of calcineurin inhibitors.

Publication Title

Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE23751
In Vitro Transcriptome Analysis of Porcine Plexus Epithelial Cells in Response to Streptococcus suis: Functions of the Choroid Plexus in Antimicrobial Defense
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)

Publication Title

In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15139
Identification of genes effected by GM-CSF treatment in mature human neutrophils
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The objective of this study was to compare the transcriptional repertoire of mature human neutrophils before and after GM-CSF treatment by using oligonucleotide microarrays.

Publication Title

RhoH/TTF negatively regulates leukotriene production in neutrophils.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62532
Continuous T cell receptor signals maintain a functional regulatory T cell pool
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become regulatory T (Treg) cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined.

Publication Title

Continuous T cell receptor signals maintain a functional regulatory T cell pool.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33308
Keratinocyte Growth Factor and Dexamethasone Plus Elevated cAMP Levels Synergistically Support Pluripotent Stem Cell Differentiation into Alveolar Epithelial Type II Cells.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Alveolar epithelial type II (ATII)-like cells can be generated from murine embryonic stem cells (ESCs), although to date, no robust protocols applying specific differentiation factors are established. We hypothesized that the keratinocyte growth factor (KGF), an important mediator of lung organogenesis and primary ATII cell maturation and proliferation, together with dexamethasone, 8-bromoadenosine-cAMP, and isobutylmethylxanthine (DCI), which induce maturation of primary fetal ATII cells, also support the alveolar differentiation of murine ESCs. Here we demonstrate that the above stimuli synergistically potentiate the alveolar differentiation of ESCs as indicated by increased expression of the surfactant proteins (SP-) C and SP-B. This effect is most profound if KGF is supplied not only in the late stage, but at least also during the intermediate stage of differentiation. Our results indicate that KGF most likely does not enhance the generation of (mes)endodermal or NK2 homeobox 1 (Nkx2.1) expressing progenitor cells but rather, supported by DCI, accelerates further differentiation/maturation of respiratory progeny in the intermediate phase and maturation/proliferation of emerging ATII cells in the late stage of differentiation. Ultrastructural analyses confirmed the presence of ATII-like cells with intracellular composite and lamellar bodies. Finally, induced pluripotent stem cells (iPSCs) were generated from transgenic mice with ATII cell-specific lacZ reporter expression. Again, KGF and DCI synergistically increased SP-C and SP-B expression in iPSC cultures, and lacZ expressing ATII-like cells developed. In conclusion, ATII cell-specific reporter expression enabled the first reliable proof for the generation of murine iPSC-derived ATII cells. In addition, we have shown KGF and DCI to synergistically support the generation of ATII-like cells from ESCs and iPSCs. Combined application of these factors will facilitate more efficient generation of stem cell-derived ATII cells for future basic research and potential therapeutic application.

Publication Title

Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP097735
Neuroblastoma cells undergo transcriptomic alterations during dissemination into the bone marrow and subsequent tumor progression
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of stage M patients present with disseminated tumor cells (DTCs) in the bone marrow (BM). Although these cells represent a major obstacle in the treatment of neuroblastoma patients, their transcriptomic profile was not intensively analyzed so far. Results: RNA-Seq of stage M primary tumors, enriched BM-derived DTCs and the corresponding non-tumor mononuclear cells (MNCs) revealed that DTCs largely retained the gene expression signature of tumors. However, we identified 322 genes that were differentially expressed (q < 0.001, |log2FC|>2). Particularly genes encoded by mitochondrial DNA were highly up-regulated in DTCs, whereas e.g. genes involved in angiogenesis were down-regulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8x10-75 log2FC > 6). Interestingly, we found that the gene expression profiles of diagnostic DTCs largely resembled those of relapse DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2FC| > 0.5). Notably, relapse DTCs showed a positional enrichment of 31 down-regulated genes encoded by chromosome 19, including five tumor suppressor genes (SIRT6, PUMA, STK11, CADM4 and GLTSCR2). Conclusion: This first RNA-Seq analysis of DTCs from neuroblastoma patients revealed their unique expression profile in comparison to the corresponding MNCs and tumor samples, and, interestingly, also expression differences between diagnostic and relapse DTCs preferentially affecting chromosome 19. As these alterations might be associated with treatment failure and disease relapse, they should be considered for further functional studies. Overall design: Tumor (n=16), bone marrow-derived disseminated tumor cells (n=42) and corresponding bone marrow-derived non-tumor cells (n=28) of stage M neuroblastoma patients were used for RNA-Seq

Publication Title

Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact