refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE47813
Pre-leukemic Cebpa mutant myeloid progenitors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In this study, we use pre-malignant cells from different Cebpa mutant acute myeloid leukemia (AML) models. We have used conditional KO models (CreLoxP) and isolated hematopoietic cells shortly after induction of recombination, in order to look at pre-leukemic cells, which have acquired the first hit, but not yet undergone full malignant transformation.

Publication Title

Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP149190
Transcriptional profile of monocytes in the colon in response to C. rodentium infection
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptional profile of monocytes in the colon in response to C. rodentium infection Overall design: Eight samples have been analyzed. All are from Cd11b+Ly6C+ inflammatory monocytes sorted from colonic tissue 9 days after C. rodentium infection from Atg16L1HM(4) and WT(4) mice.

Publication Title

Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP144520
The splicing factor RBM25 controls MYC activity in Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in Acute Myeloid Leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that “non-mutated” splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This led to the identification of the splicing regulator RBM25 as a novel tumor suppressor, and down-regulation of RBM25 increased proliferation and decreased apoptosis in human leukemic cell lines. Mechanistically, we could show that RBM25 controlled the splicing of key genes, including those encoding the apoptotic regulator BCL-x and the MYC inhibitor BIN1. Specifically, we demonstrated that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels. This mechanism also appears to be operative in human AML patients where RBM25 levels correlative inversely with MYC activity and clinical outcome. Overall design: Examined transcriptome from U937 cells in biological triplicates.

Publication Title

The splicing factor RBM25 controls MYC activity in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon E-MEXP-1100
Transcription profiling of Arabidopsis seedlings with disturbed function of CDKB2;1 and CDKB2;2 by either overexpression or knock-down
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Comparison of Arabidopsis seedlings with disturbed function of CDKB2;1 and CDKB2;2 by either overexpression or knock-down

Publication Title

Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42498
Deletion of Cebpa from HSCs
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In this study, we use a conditional mouse model for Cebpa to investigate the significance of C/EBP in HSCs. The frequency of HSCs is unaltered following deletion of C/EBP, however, upon serial transplantations of either full BM or purified HSCs, the stem cells and stem cell activity is lost. This is not due to increased proliferation, but rather caused by a shift from quiescence to apoptosis with a resultant exhaustion of the stem cell pool. We identify direct C/EBP target genes by combining genome-wide C/EBP ChIP-seq analysis in stem and progenitor cells with gene expression data from HSC with and without C/EBP. Furthermore, we explore the impact of C/EBP on active and repressive histone modifications by doing functional genome-wide ChIP-seq analysis of H3K4Me3 and H3K27Me3 in stem and progenitor cells with and without C/EBP.

Publication Title

C/EBPα is required for long-term self-renewal and lineage priming of hematopoietic stem cells and for the maintenance of epigenetic configurations in multipotent progenitors.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-MAXD-6
Transcription profiling by array of Drosophila larvae after parasitoid attack
  • organism-icon Drosophila melanogaster
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

We explored the transcriptional response to parasitoid attack in Drosophila larvae at nine time points following parasitism, hybridizing five biologic replicates per time point to whole-genome microarrays for both parasitized and control larvae. We found significantly different expression profiles for 159 probe sets (representing genes), and we classified them into 16 clusters based on patterns of co-expression. A series of functional annotations were nonrandomly associated with different clusters, including several involving immunity and related functions. We also identified nonrandom associations of transcription factor binding sites for three main regulators of innate immune responses (GATA/srp-like, NF-kappaB/Rel-like and Stat), as well as a novel putative binding site for an unknown transcription factor. The appearance or absence of candidate genes previously associated with insect immunity in our differentially expressed gene set was surveyed

Publication Title

Genome-wide gene expression in response to parasitoid attack in Drosophila.

Sample Metadata Fields

Time

View Samples
accession-icon GSE10626
MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Under various pathophysiological muscle-wasting conditions like diabetes and starvation, a family of ubiquitin ligases, including MuRF1 (Muscle specific RING-Finger protein 1), are induced to target muscle proteins for degradation via ubiquitination. In an attempt to identify the in vivo targets of MuRF1 we have generated transgenic mouse lines overexpressing MuRF1 in a skeletal muscle specific fashion. MuRF1-TG lines were viable and had normal fertility. Characterization of their skeletal muscles did not reveal evidence for muscle wasting at 10 weeks of age. In this experiment we compared the skeletal muscle transcriptome of transgenic mice with wildtypes.

Publication Title

MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE84921
Gene expression profiles of human immature dendritic cells and macrophages after 6h of co-cultivation with Aspergillus fumigatus and platelet rich plasma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

In a whole-transcriptome study, cellular responses of DCs and macrophages confronted with the fungi A. fumigatus, platelet rich plasma (PRP) or the combination of A.fumigatus and PRP were investigated. Therefore DCs and macrophages of three independent donors were harvested after 6 hours co-culture with A. fumigatus, platelet rich plasma (PRP) or the combination of A.fumigatus and PRP and analyzed with Affymetrix whole genome expression arrays. In general, transcriptomic analysis revealed a cell type dependent clustering. Only little effects were obeserved by addition of PRP. Furthermore a clustering of A.fumigatus stimulated cells whether PRP was present or not, was observed. However, significant differences in the immune response of A.fumigauts stimuled DC and macrophages were determined.

Publication Title

Influence of Platelet-rich Plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49085
Identification of bone morphogenetic protein (BMP)-7 as a key instructive factor for human epidermal Langerhans cell differentiation and proliferation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Langerhans dendritic cells represent abundantly occuring and evolutionary highly conserved DCs specifically located in the stratified epithelial tissues. LCs are unique among DC family members in that they express epithelial-type adhesion molecules, allowing them to form a tight three-dimensional network in basal and suprabasal epidermal keratinocyte layers and developmentally dependent on the cytokine TGF-1. In the present study, we identified BMP-7 as another key factor inducing LC differnetiation. Here we have performed comparative analysis of highly purified CD207+/CD1a+ in vitro generated Langerhans cells in the presence of BMP-7 and TGF-1. We have identified that both BMP-7-LCs and TGF-1-LCs are closely related to each other.

Publication Title

Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE62065
Cells with features of totipotency derived from human ESC and iPSC by transient BMP4 exposure
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Human pluripotent stem cells (hPSC) exposed to BMP4 (B) and inhibitors of ACTIVIN signaling (A83-01; A) and FGF2 (PD173074; P) in absence of FGF2 (BAP conditions) differentiate into colonies primarily comprised of trophoblast. In an attempt to isolate trophoblast stem cells, colonies of hESC were exposed to BAP for 24 h at which time they had begun to transition into a CDX2-positive state. Cultures were then dissociated into single cells by trypsin and grown on a gelatin substratum. Under these conditions, organized CDX2+/KRT7- colonies began to emerge within a few days. The self-renewing cell lines were not TBSC, but met standard criteria for pluripotency. They were named H1BP cells. They differed from the progenitor hPSC in morphology, ability to be clonally propagated from single cells onto gelatin, requirements for FGF2, and transcriptome profile.

Publication Title

Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact