refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 37 results
Sort by

Filters

Technology

Platform

accession-icon SRP069243
Genome-wide expression profile in FH-deficient (UOK262) vs FH-competent (UOK262pFH) human cells derived from metastatsis to the mediastinum of a HLRCC patient
  • organism-icon Homo sapiens
  • sample-icon 270 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Comparison of the transcriptome of human kideny cancer cells either wild-type for FH or FH-deficient. The UOK262 cells were isolated from mediastinum metastasis of a HLRCC patient (Yang et al. Cancer Genetics and Cytogenetics, Volume 196, Issue 1, 1 January 2010, Pages 45–55). FH function was restored in the UOK262 by re-expressing the FH transcript from an exogenous plasmid. Overall design: Examination of gene transciption in 2 cell types.

Publication Title

Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069245
Genome-wide expression profile in Fh1-competent vs Fh1-deficient mouse kidney cells
  • organism-icon Mus musculus
  • sample-icon 200 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Comparison of the transcriptome of immortalised mouse kidney epithelial cells either wt for Fh1 or Fh1-deficient. The cells were isolated from kidneys of P5 mouse(see Frezza et al, Nature 2011). Briefly, Fh1_fl (flox) are wt for Fh1 (floxed cassette not excised), clone 1 and clone 19 are two different Fh1-deificent clones (floxed cassette excised) and Rec are clone 19 with reconstituted Fh1 expression from exogenous plasmid. Overall design: Examination of gene transciption in 4 cell types.

Publication Title

Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE61930
SaOS-2 transfected with CD99 in differentiation medium for 14 days
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE61928
SaOS-2 transfected with CD99 in differentiation medium for 14 days [total RNA]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We explored the transcriptional modification induced by CD99 transfection in the osteosarcoma cell lines SaOS-2 after 0, 7 and 14 days in differentiation medium.

Publication Title

Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE32937
MicroRNA-29 in Aortic Dilation: Implications for Aneurysm Formation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared the aorta of 6-weeks-old mice (young) with 18-months-old mice (old). Using the publicly available tools Sylamer and DIANA-mirExTra, we identified an enrichment for miR-29 binding sites in the 3'UTR of genes downregulated in the aged aortas. We subsequently showed that inhibition of miR-29 in aged mice prevented dilation of the aorta.

Publication Title

MicroRNA-29 in aortic dilation: implications for aneurysm formation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE34917
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34892
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Affymetrix).
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5667
Transcription data from Normal Skin and Nonlesional and Lesional Atopic Dermatitis/Eczema Skin
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Atopic dermatitis (AD) is a common pruritic dermatitis with macroscopically nonlesional skin that is often abnormal. Therefore, we used high-density oligonucleotide arrays to identify cutaneous gene transcription changes associated with early AD inflammation as potential disease control targets. Skin biopsy specimens analyzed included normal skin from five healthy nonatopic adults and both minimally lesional skin and nearby or contralateral nonlesional skin from six adult AD patients.

Publication Title

Early cutaneous gene transcription changes in adult atopic dermatitis and potential clinical implications.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46608
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes.

Publication Title

Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46606
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4 (expression)
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporal analysis of B cell activation in vitro using CD40L and IL-2/4/5 cytokines in wild type Irf4+/+ B cells or in mutant Irf4-/- B cells harboring a tet-inducible allele of Irf4. IRF4 expression was restored, or not, in the Irf4-/- background by culturing in the presence of low or high concentrations of doxycycline. The results provide insight in the role of IRF4 expression levels in coordinating different programs of B cell differentiation.

Publication Title

Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact